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1.1 Introduction

Over a period of time, Earth’s outer shell (atmosphere, hydrosphere, cryosphere,
biosphere) winds along a unique trajectory toward an ever-changing, and hence
elusive, radiative equilibrium. It is elusive partly because Earth’s overwhelming
external boundary condition, solar irradiance, is never constant thanks to con-
tinuous variations in both orbit about the Sun and solar output. As such, the
best Earth, and any other planet, can do is achieve a sequence of states that
are in quasi- (radiative) equilibrium over a period of time that spans at least
several annual cycles. Even if boundary conditions were static, it is now recog-
nized that Earth’s climate would not settle down to a single state or even a fixed
cycle. Instead, it would execute a non-repeating sequence of, potentially very
diverse, states that approximate radiative equilibrium. This chaotic character
is supported by the inexorable intertwining of internal processes that operate
at radically different time-scales. Indeed, the life giving/supporting character
of Earth’s climate system, that begins with absorption of solar radiation and
ends with infrared emission to space, owes much of its richness, and worthiness
of study, to the four-dimensional interaction between radiation and the three
phases of water.

Given the fundamental role of large-scale radiation budgets in setting the
character of climate and climatic change, and the fact that large-scale bud-
gets are governed by conditions at smaller scales, it is essential that radiation–
water interactions be accounted for as accurately as possible in numerical global
climate models (GCMs). In GCMs, however, physical processes that occur at
scales less than several hundred kilometres are often unresolved and so must be
parametrized in terms of resolved conditions and assumptions about the state
of unresolved conditions. This includes radiative transfer and many atmospheric
fluctuations as their characteristic scales are typically less than a few kilometres.

While radiative fluxes at specific wavelengths are important for certain pro-
cesses, such as photosynthesis, the primary role played by radiation within the
climate system is heating and cooling. Hence, for the most part, modelling the
flow of radiation in a dynamical model of Earth involves integrations of fluxes
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over fairly broadbands. Broadband irradiances, or fluxes, are generally defined
for incoming solar radiation and terrestrial radiation emitted by the Earth–
atmosphere system. While these sources overlap, they are generally considered
to be exclusive and to span wavelengths between [0.2, 5] µm for solar and [5, 50]
µm for terrestrial. Like their counterparts in the spatial domain, atmospheric
spectral properties have to be defined at fairly course resolutions for radiation
calculations in GCMs.

Given that the central topic of this volume is scattering of light, and the
fact that solar radiation is scattered in the Earth–atmosphere system to a much
greater extent than terrestrial radiation1, this chapter focuses overwhelmingly
on the treatment of solar radiative transfer within GCMs. Hence, the purpose of
this chapter is to briefly review methods for computing solar radiative transfer
in GCMs and to speculate on both deficiencies in these methods and how far we
should be going to address these deficiencies.

The second section of this chapter gives a brief overview of how radiation
figures into the climate system and the important role that radiation plays in
diagnosing both real and modelled climates. The third section presents the basic
method of representing solar radiative transfer in GCMs; two-stream approxima-
tions. It also discusses methods that have been proposed to extend two-streams
in order that they capture the essence of solar transfer through unresolved in-
homogeneous cloudy atmospheres. In the fourth section, 1D (i.e., two-stream-
based) solar transfer is contrasted with 3D transfer and it is asked whether
global modellers should be concerned about systematic differences. The fifth
section highlights some recent work with remote sensing of cloudy atmospheres.
Concluding remarks are made in the final section.

1.2 Earth’s radiation budget and feedbacks

This section provides an overview of the central role played by radiation in global
climatology. It discusses the impact of clouds on Earth’s radiation budget and
the prominent role of radiation in cloud–climate feedback processes.

1.2.1 Earth’s radiation budget and climatic variables

The fundamental working hypothesis in analysis of global climate is that over a
sufficiently long period of time T (> 1 year), the Earth–atmosphere system is in
radiative equilibrium such that

∫
T

{
S�(t)

4
[1 − αp(t)] − I(t)

}
dt = 0, (1.1)

1Rayleigh scattering is effectively nil at terrestrial wavelengths and the imaginary
part of the refractive index for water in the heart of the solar spectrum is several orders
of magnitude smaller that it is in the atmospheric thermal window.
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where S� is incoming normal solar irradiance (according to the SORCE ra-
diometer, S� ≈ 1361 ± 0.5 W m−2 at 1 AU; see http://lasp.colorado.edu/sorce/
tsi data.html), the factor of 1/4 arises because Earth is spherical, αp is top of at-
mosphere (TOA) albedo, and I is outgoing longwave radiation (OLR). All of the
quantities in (1.1) are spectrally-integrated. Climatic variables are often grouped
into two classes: external and internal variables. External variables are those that
evolve independently of climate. That is, they affect an effect, but there are no
return effects. The ultimate external variable is of course S�. Through variations
in Earth’s orbit about the Sun and variations in solar output (both spectrally and
integrated), S� varies constantly (see the SORCE page listed earlier). Volcanic
activity is often cited as an external variable. On sub-geologic time-scales this
is accurate as volcanic emissions can impact αp significantly with no discernible
reverse impact on volcanic activity. On much longer time-scales, however, volca-
noes alter atmospheric composition and it has been speculated that this alters
life, ocean sediments, the lithosphere, plate tectonics, and hence volcanic activity
(Lovelock 1988).

If a fluctuating variable exhibits excessive intermittency it can fall into a
grey zone between internal and external. For instance, desert dust storms, which
can alter the vertical distribution of radiation significantly over large regions,
are highly intermittent. One could argue that dust storms only impact weather
and climate and that their rate and frequency of occurrence does not depend on
themselves. But where does one draw the line and impose a threshold? Since the
distribution of dust storms depends on local conditions that are naturally tied
to large-scale conditions, then since dust storms influence weather, there must
be a direct link back to their occurrence. While many factors conspire to bring
about a certain distribution of dust storms, dust storms themselves must play
a role and so dust storms are not external variables, despite the seeming gulf
between their immediate impacts and their sources.

Another grey variable is human activity. On one hand, climate determines
greatly the distribution of human settlement and activity. It has been known for
many decades that human activity can directly impact climate, as exemplified
in studies of desertification (Charney et al. 1977), deforestation (Snyder et al.
2004), and greenhouse gas emissions (Houghton et al. 2001). Desertification and
deforestation result in direct alterations to surface albedo, surface roughness, and
evapotranspiration. This has direct impacts on local partition of energy available
for heat and water fluxes. These alter circulation and moisture patterns and
hence local and global climate. Emissions of greenhouse gases alter atmospheric
opacity and hence I. The short to medium term impacts on global climate
have been studied widely, and while the gross details are recognized generally,
specifics (i.e., regional impacts) are still unclear. So, for example, if desertification
and deforestation alter regional and global climate, and these alterations force
changes in agricultural and silvicultural practices (i.e., human activity), human
activity will then be undoubtedly an internal variable. Likewise, if the impacts
of global warming via increased levels of greenhouse gases alter human activity,
humans are again an internal variable. Indeed, it is difficult to imagine how life
in general can be anything other than an internal variable.
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An indisputable example of an internal climatic variable is cloud. Clouds
are highly intermittent, like dust storms, exist over a wide range of spatial and
temporal scales, and demonstrably influence, and get influenced by, their envi-
ronment. While each cloud, and field that it is associated with, is an individual
example, their properties are generally discussed in climatology in terms of spa-
tial and temporal integrals and hence as members of a population. Clearly there
is an overall population of clouds, but often clouds are categorized into subpop-
ulations in terms of the meteorological conditions in which they live. As climate
fluctuates, correlations of distributions of occurrence of cloud subpopulations can
change and so too can the internal characteristics of subpopulations. In the for-
mer case, clouds are clouds and it is frequencies of occurrence of subpopulations
that fluctuate in space and time. For example, a region subject to a changing
climate might experience more cumuliform clouds and fewer stratiform clouds,
yet the characteristics of each subpopulation might remain unchanged. In the
latter, detailed properties of clouds might change presumably along with changes
to frequency distributions of subpopulations. For example, a drier climate might
have more wind-blown dust which might alter particle size, turbulent structure,
and vertical extent of cumuliform clouds. Changes to subtle properties like these
will impact local energy and moisture budgets, circulation, dust occurrence,
subtle cloud properties, and ultimately frequencies of occurrence of cloud sub-
populations. Either way, the role of clouds, as internal variable, in climate and
climatic change is still very murky. Hence, uncertainty about representation of
their structural and radiative properties in climate models diminishes confidence
in climate model predictions (Houghton et al. 2001).

1.2.2 Radiation and climate feedbacks

Conventionally, climate sensitivity has been assessed by assuming that (1.1)
holds and that perturbations to (1.1) by amounts ∆R, arising from changing
either an internal or external variable, are sudden and followed by restoration
of equilibrium so that (1.1) holds again. In actuality, ∆R are generally time-
dependent (i.e., forcings are generally transient) thereby inexorably intertwining
forcing(s), restoration of equilibrium, and internal chaotic behaviour.

Aires and Rossow (2003) developed a general multivariate expression for
the time evolution of changes to TOA net flux F . For brevity and simplicity,
discussion of their formulation picks up after several basic assumptions have
been made that limit the nature, and make for more tractable analyses, of the
climate system. Assume that a time-dependent external forcing ∆R is applied to
the climate system and that it acts only on F . Thus, ∆R represents a radiative
perturbation such as, for example, a change to the solar constant or a volcanic
eruption. This results in changes to internal climatic variables xi that interact
with one another and thus alter F further. Aires and Rossow expressed the
change in F as a function of time t as



1 Solar radiative transfer and global climate modelling 7

∆F (t0 + 2∆t) ≈ ∆R (t0 + 2∆t) +
∑
i

∂F (t0 + 2∆t)
∂xi (t0 + ∆t)

∆xi (t0 + ∆t) (1.2)

+
∑
i

∑
j

∂F (t0 + 2∆t)
∂xi (t0 + ∆t)

∂xi (t0 + ∆t)
∂xj (t0)

∆xj (t0) ,

where ∆t is timestep. A large step towards classical analysis of climate models is
to assume that the external forcing ∆R on F directly impacts a single diagnosed
variable, considered here (and most often) to be surface air temperature Ts, with
negligible direct impact on other variables. This simplifies (1.2) to

∆F (t0 + 2∆t) ≈ ∆R (t0 + 2∆t) +
∂F (t0 + 2∆t)
∂Ts (t0 + ∆t)

∆Ts (t0 + ∆t) (1.3)

+
∑
i

∂F (t0 + 2∆t)
∂xi (t0 + ∆t)︸ ︷︷ ︸

radiative
sensitivities

∂xi (t0 + ∆t)
∂Ts (t0)︸ ︷︷ ︸

state
relations︸ ︷︷ ︸

feedbacks

∆Ts (t0) ,

where it is seen that the feedbacks, or cause and effect relations, consist of
a state relation and a radiative sensitivity. Going further and assuming that
∆R and feedbacks are independent of t, and that the system actually makes it
to equilibrium (i.e., ∆F → 0), (1.3) collapses to the classical expression (e.g.,
Schlesinger and Mitchell 1987)

∆Ts ≈ −∆R
∂F

∂Ts
+
∑
i

∂F

∂xi

∂xi
∂Ts

(1.4)

which upon expansion of F into its solar and terrestrial components yields the
familiar form

∆Ts ≈ −∆R
∂I
∂Ts

+
S�
4
∂αp
∂Ts︸ ︷︷ ︸

initial

+
∑
i

[
∂I
∂xi

+
S�
4
∂αp
∂xi

]

︸ ︷︷ ︸
radiative

sensitivities

∂xi
∂Ts︸︷︷︸
state

relations︸ ︷︷ ︸
feedbacks

. (1.5)

The term labelled initial is also referred to as system gain. In the absence of
feedbacks, it is the gain that brokers the response of Ts to ∆R. For example,
doubling [CO2] would increase Earth’s atmospheric opacity and reduce net long-
wave radiation at the tropopause resulting in ∆R ≈ −4 W m−2 (Cess et al. 1993).
Assuming that Ts ≈ 287 K and αp ≈ 0.3, Earth’s effective emissivity is

ε ≈
S�
4 (1 − αp)
σT 4

s

≈ 0.62, (1.6)
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and since changing [CO2] has a negligible impact on αp,

∂F

∂Ts
≈ ∂I
∂Ts

≈ 4εσT 3
s ≈ 3.3 W m−2 K−1 (1.7)

where σ is the Stefan–Boltzmann constant. Substituting these numbers into (1.4)
implies that in the absence of feedbacks, doubling [CO2] would result in roughly
∆Ts ≈ −∆R/4εσT 3

s ≈ 1.2 K. The fact that GCM estimates of ∆Ts for doubling
[CO2] range from ∼1 K to ∼5 K means that internal climatic variables work
together to affect anything from a modest attenuation to a strong enhancement
of the gain.

This attenuation and enhancement of system gain arises through feedbacks,
or cause and effect relations, between internal variables. These relations are
represented by the term in (1.5) labelled feedbacks. This is where almost all
of the uncertainty about, and research into, climate prediction rests. Grouping
feedback processes and gain together into a global feedback parameter as

Λ̂ =
∂F

∂Ts
+
∑
i

∂F

∂xi

∂xi
∂Ts

(1.8)

and defining ŝ = −1/Λ̂ as the climate sensitivity parameter, (1.4) becomes

∆Ts ≈ ŝ∆R. (1.9)

This formulation is actually applicable to equilibria states only and there is no
sound reason to believe that ŝ (or Λ̂) is independent of regime or time. Hence the
motivation behind Aires and Rossow’s (2003) formalism: ŝ depends on climatic
state and simply boiling down a GCM simulation to one number is certainly an
oversimplification, and at worst misleading.

Nevertheless, it has been proposed (e.g., Gregory et al. 2004; Stowasser et al.
2006) that useful information can be obtained by studying the phase trajectory of
a perturbed model’s recovery of radiative equilibrium. Begin by defining 〈R′(t)〉
as a model’s time-dependent radiative imbalance at the TOA, where the initial
perturbation is 〈R′(0)〉 = ∆R and 〈R′(∞)〉 = 0, and 〈T ′

s(t)〉 as a model’s time-
dependent change in mean surface temperature, where initially 〈T ′

s(0)〉 = 0 and
equilibrium temperature change is 〈T ′

s(∞)〉. Then, plotting 〈R′(t)〉 vs. 〈T ′
s(t)〉,

one often finds that for long stretches of time, following an adjustment period
where the GCM recovers from the shock of having ∆R administered to it sud-
denly,

〈R′(t)〉 ≈ a+ b 〈T ′
s(t)〉 (1.10)

is a fair approximation in which b = Λ̂. In general, however, one could fit the
results with some curvilinear function and analyze

∂ 〈T ′
s〉

∂ 〈R′〉 = −ŝ(t) . (1.11)

As discussed by Aires and Rossow and Barker and Räisänen (2005), isolating
individual feedback relations and obtaining an estimate of Λ̂ from observations
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is a daunting task relative to studying only radiative sensitivities (i.e., ∂F/∂xi).
Once one has profiles of information such as cloud fraction, mean water paths,
variance of water paths, they can, however, be varied thereby estimating radia-
tive sensitivities numerically. This goes for both model data and data inferred
from observations that provide vertical profiles and horizontal transects of cloud
properties (such as, for example, profiles obtained from the Atmospheric Radi-
ation Measurement (ARM) Program’s surface sites and active/passive satellite
systems such as the A-train and EarthCARE).

In addition to sensitivities, radiative uncertainties can be defined as

∆Fxi
≈ ∂F

∂xi
∆xi , (1.12)

where ∆xi is uncertainty for an internal variable xi. Given a reasonable estimate
of ∆xi, study of radiative uncertainties could help guide the extent to which effort
should be expended on developing subgrid-scale parametrizations of radiative
properties. For instance, if one is parametrizing xi, yet it turns out that ∂F/∂xi,
and ultimately ∆Fxi

, is very small for a realistic ∆xi, a parametrization as
simple as a judicious global setting, as opposed to a detailed parametrization,
that could be years in the making, may be sufficient.

The purpose of this discussion on climate sensitivities and analyses is to
point out the central role of radiation and radiative transfer in both the climate
system and models that attempt to capture some of its characteristics. In light
of this, it is interesting to note that radiative transfer model intercomparison
studies reported by Fouquart et al. (1991) and Barker et al. (2003) indicate
that when several different radiative transfer models act on identical clear and
cloudy atmospheres, the range of responses can be surprisingly large. Thus, it
is still unclear how much of the disparity among GCM feedback parameters
is due to different treatments of clouds, their optical properties, and different
treatments of radiative transfer (particularly for cloudy atmospheres). Similarly,
Collins (pers. comm., 2005) show that the much more straightforward radiative
forcings due to changes in trace gas concentrations are still in question. This
leads to GCM differences right off the top as standardized forcings used in GCM
intercomparisons differ.

To summarize, representation of radiative transfer is crucial for confident
prediction of climate and assessment of climate models. As such, the following
sections discuss some current issues facing modelling of solar radiation in climate
models.

1.3 Solar radiative transfer for global models

For reasons of tractability and justifiability in the face of numerous assumptions
and uncertainties, essentially all global models employ two-stream approxima-
tions to solve for atmospheric radiative transfer. Since it appears that this will
be the case for some time to come, barring the occasional jump to more so-
phisticated models (e.g., Gu and Liou 2001), this section gives a brief account of
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two-stream approximations for plane-parallel, homogeneous conditions, methods
for extending two-streams, and finally solar transfer for Earth surfaces.

1.3.1 The Independent Column Approximation (ICA)

If one is provided with a surface–atmosphere domain D whose light attenuation
properties can be described in three dimensions, domain-average albedo 〈R〉 (or
transmittance, or flux in general) can be computed with an exact solution of the
radiative transfer equation such that

〈R〉 =
∫∫

D
R3D (x, y) dxdy

/∫∫
D

dxdy , (1.13)

where R3D is albedo from a solution that accounts for the 3D flow of radia-
tion. Now divide D into subcolumns and assume that radiation flows through
each subcolumn independently of all other subcolumns, regardless of the cross-
sectional area of the subcolumns, and that flow through each subcolumn can be
described by 1D transport theory. This is the independent column approximation
(ICA) of (1.13) which can be expressed as

〈R〉 =
∫∫

D
R1D (x, y) dxdy

/∫∫
D

dxdy , (1.14)

where R1D is from a 1D radiative transfer model that can range from a two-
stream approximation to a Monte Carlo algorithm. Alternatively, (1.14) can be
expressed as

〈R〉 =
N∑
n=1

a(n)R1D (n)
/ N∑
n=1

a(n) , (1.15)

where D is now recognized as consisting of N subcolumns of cross-sectional area
a(n). In most cases, a are equal for all n, and so (1.15) becomes simply

〈R〉 =
1
N

N∑
n=1

R1D (n) . (1.16)

On several occasions the ICA has performed very well for many different cloud
regimes (Cahalan et al. 1994; Chambers et al. 1997; Barker et al. 1999; Benner
and Evans 2001). Where (1.13) and (1.14) differ most is for large solar zenith
angles θ0 when energy input is small. The ICA tends to become an increasingly
better approximation of (1.13) as D increases in size and temporal integration
lengthens (Benner and Evans 2001). Thus, the ICA seems to be a reasonable
standard for less rigorous models to aim for, especially when descriptions of the
multi-point statistics of D are uncertain or unknown.

For GCMs, the cross-sectional area of D generally exceeds 104 km2. More-
over, descriptions of unresolved fluctuations in optical properties inside D are,
almost by definition, lacking. Hence, GCMs can justify using only 1D radiative
transfer models within the ICA framework. The current paradigm is to apply
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1D codes based on the two-stream approximation in which unresolved variabil-
ity is either reduced to fractional coverage of homogeneous clouds that overlap
according to extremely idealized configurations or incorporated directly into 1D
transport solvers. Thus, the following subsections review two-stream approxima-
tions, their limitations, and some of the more popular attempts to extend their
use in conjunction with the ICA.

1.3.2 Fluxes for single layers: the two-stream approximation

The steady-state, elastic radiative transfer equation can be written as

Ω · ∇I(x,Ω) = σ(x)I(x,Ω) − σs(x)
∫
p(Ω · Ω′)I(x,Ω′) dΩ′ − f(x,Ω) (1.17)

where x is position, Ω is direction, I is radiance, σ is extinction coefficient, σs is
scattering coefficient, p is scattering phase function describing the probability of
radiation incident from direction Ω being scattered into direction Ω′, and f is
the attenuated source term. Exact solution of this equation for a general medium
requires both much information regarding the nature of the medium and much
computational power. Therefore, approximations are required for global models
with the basic requirement being computation of reflectance and transmittance
for individual model layers.

First, it is assumed that

∂ optical
properties

∂x
=
∂ optical

properties

∂y
=
∂I

∂x
=
∂I

∂y
= 0 . (1.18)

which eliminates horizontal fluctuations in the atmosphere, surface, and radi-
ation field. This simplifies (1.17) to the azimuthally-averaged 1D equation of
transfer that can be written as

µ
dI(τ, µ)

dτ
= I(τ, µ) − ω0

2

∫ 1

−1
p(µ;µ′)I(τ, µ′) dµ′

−F0

4
ω0p(µ;µ0) e−τ/µ0 ,

(1.19)

where all terms have been azimuthally-averaged, F0 is incoming solar at the top
of atmosphere (TOA), µ is cosine of zenith angle, µ0 = cos θ0, and

dτ = σ ds; ω0 = σs/σ , (1.20)

where s is geometric distance, τ is optical thickness, and ω0 is single scattering
albedo. Defining

F±(τ, µ0) =
∫ 1

0
µI(τ,±µ) dµ (1.21)

as upwelling and downwelling irradiances, and applying the operators
∫ 1
0I(τ,µ) dµ

and
∫ 0

−1 I(τ, µ) dµ to (1.19) yields the coupled equations
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dF+(τ, µ0)
dτ

= γ1F
+(τ, µ0) − γ2F

−(τ, µ0) − F0

4
ω0γ3 e−τ/µ0

dF−(τ, µ0)
dτ

= γ2F
+(τ, µ0) − γ1F

−(τ, µ0) +
F0

4
ω0γ4 e−τ/µ0

(1.22)

that can be solved readily by standard methods subject to specific boundary
conditions where the coefficients γ1, . . . , γ4 depend on assumptions made about
I and p, as well as on µ0 and optical properties. The general two-stream solution
to (1.22) that describes layer reflectance and transmittance for absorbing layers
irradiated by a collimated-beam from above with no upwelling or downwelling
diffuse irradiances on the boundaries (Meador and Weaver 1980) is

Rpp(τ) =
ω0

α

r+ ekτ − r− e−kτ − r e−τ/µ0

ekτ − β e−kτ (1.23)

and

Tpp(τ) = e−τ/µ0

{
1 − ω0

α

t+ ekτ − t− e−kτ − t e−τ/µ0

ekτ − β e−kτ

}
, (1.24)

where

r± = (1 ∓ kµ0) (γ1γ3 − γ2γ4 ± kγ3) ; r = 2k [γ3 − (γ1γ3 − γ2γ4)µ0] ,

t± = (1 ± kµ0) (γ1γ4 − γ2γ3 ± kγ4) ; t = 2k [γ4 − (γ1γ4 − γ2γ3)µ0] ,

α =
[
1 − (kµ0)

2
]
(k + γ1) ; k =

√
γ2
1 − γ2

2 ; β = −k − γ1

k + γ1
.

Corresponding solutions when only isotropic diffuse irradiance is incident from
above are

rpp(τ) =
γ2(1 − e−2kτ )

k + γ1 + (k − γ2) e−2kτ (1.25)

and

tpp(τ) =
2k e−kτ

k + γ1 + (k − γ2) e−2kτ . (1.26)

It can be verified that there is a removable singularity in (1.23) and (1.24) as
ω0 → 1. Thus, a separate solution to (1.22) for conservative scattering, ω0 = 1,
has to be obtained which for collimated irradiance leads to (see Meador and
Weaver 1980)

Rpp(τ) =
γ1τ + (γ3 − γ1µ0)

(
1 − e−τ/µ0

)
1 + γ1τ

= 1 − Tpp(τ) , (1.27)

while for diffuse irradiance

rpp(τ) =
γ1τ

k + γ1
= 1 − tpp(τ) . (1.28)

Numerous two-stream approximations can be defined depending on assump-
tions made about the nature of phase functions and the scattered radiance field
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(see Meador and Weaver 1980; Zdunkowski et al. 1980; King and Harshvard-
han 1986; Appendix of this chapter). Over the past two decades, however, the
approximation of choice among modelling groups has been delta-two-stream ap-
proximations. For these approximations, p is expressed as a combination of a
smoothly varying portion and a sharp forward scattering peak:

pδ(µ,µ′) ≡ 2g2δ(µ− µ′) +
(
1 − g2)(1 +

3gµµ′

1 + g

)
, (1.29)

where
g =

1
2

∫ 1

−1
µ′p(µ;µ′) dµ′ (1.30)

is asymmetry parameter, and δ is the Dirac distribution (Joseph et al. 1976). Fig-
ure 1.1 shows that for cloud droplets this approximation is good. It is straightfor-
ward to show that when this transformation is applied, all of the above presented
equations are recovered, but layer optical properties are scaled as

τ ′ = (1 − ω0g
2)τ

ω′
0 =

(1 − g2)ω0

(1 − ω0g2)

g′ =
g

1 + g
.

(1.31)

Fig. 1.1. Inset plot shows a log plot of the Mie scattering phase function as a function
of scattering angle for a droplet size distribution with effective radius of 10 µm and
effective variance of 0.1 at wavelength 0.6 µm. This is the usual way these functions are
presented. The outer plot is the same as the inner except it is on a linear scale. Shown
this way it is immediately apparent that the delta approximation in (1.29) is perfectly
adequate for cloud droplets.
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Delta-two-streams generally perform well for energetically-important high
Sun conditions, but they scatter too little in near-forward directions and so for
low Sun conditions they yield systematic underestimates of cloud and aerosol
albedo. This is illustrated in Fig. 1.2 and may be of some concern in polar re-
gions where during summer µ0 is always small yet solar input is large (given long
Sun-up periods). This deficiency in delta-two-streams can be largely rectified by
shifting to the more computationally demanding delta-four-stream approxima-
tion (e.g., Li and Ramaswamy 1996).

Twenty years ago, King and Harshvardhan (1986) concluded that because
of the assumptions upon which two-streams are based, no single two-stream
approximation performs well under all conditions all the time. While this is still
true today, (delta-) two-streams are unlikely, however, to be replaced, by another
analytic model, as the model of choice in global models. This is because they are
computationally inexpensive and given the crude cloud properties they operate
on, it makes little sense to replace them with more sophisticated models such
as, for example, four-streams or diffusion approximations.

Fig. 1.2. Albedos for single layer, conservative scattering, homogeneous clouds (two
optical depths as listed on the plot) as functions of cosine of solar zenith angle µ0 using
g = 0.85 and a black underlying surface. Heavy solid lines are exact solutions computed
by DISORT (Stamnes et al. 1988), and other lines are two-stream approximations as
listed. Note that for ω0 = 1, the delta-Eddington and Practical Improved Flux Method
(PIFM) (Zdunkowski et al. 1980) are equivalent.
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1.3.3 Linking layers

With reflectances and transmittances for individual layers in hand, they must be
linked vertically in order to provide what global models are really after: heating
rate profiles and surface absorption. This is achieved best with adding methods.
For a simple two-layer system, total reflectance and transmittance are defined
as

R1,2(µ0) = R1(µ0) +
t1
{[
T1(µ0) − T dir

1
]
r2 + T dir

1 R2(µ0)
}

1 − r1r2
(1.32)

and

T1,2(µ0) = T dir
1 T2(µ0) +

t2
{[
T1(µ0) − T dir

1
]
+ T dir

1 R2(µ0)r1
}

1 − r1r2
, (1.33)

where T (µ0) and R(µ0) are equivalent to Tpp and Rpp as derived above,

T dir
1 = e−τ1/µ0 , (1.34)

and t and r are layer transmittances and reflectances for isotropic diffuse irradi-
ance (see Liou 1992). The terms in these equations are portrayed schematically
in Fig. 1.3. Note that the geometric sum formula has been applied under the
assumption that internal reflectances and transmittances are all equal for all re-
flections. This is not the case for inhomogeneous media (see Barker and Davies
1992).

The expressions in (1.32) and (1.33) can be generalized to N number of
layers. Flux profiles are then constructed by working up and down through the
atmosphere computing reflectances and transmittances for collections of layers
using

Fig. 1.3. Schematic showing how layers are linked in a SW adding scheme.
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F ↑
i = µ0S

{
T dir

1,i−1Ri,N (µ0) +
[
T1,i−1(µ0) − T dir

1,i−1

]
ri,N

1 − ri−1,1ri,N

}

F ↓
i = µ0S

{
T dir

1,i−1 +
T dir

1,i−1Ri,N (µ0)r1,i−1 +
[
T1,i−1(µ0) − T dir

1,i−1

]
1 − ri−1,1ri,N

}
,

(1.35)

where double-subscripted diffuse reflectances represent values for collections of
layers as indicated by the subscripts, and

T dir
1,i−1 = exp

[
i−1∑
k=1

τk/µ0

]
. (1.36)

Expressions like (1.35) can be computed for both clear and cloudy portions
of an atmosphere. Layers can then be linked depending on the desired nature of
vertical overlap of cloud. The most common way to proceed is to assume that
clouds in adjacent layers are maximally overlapped and that collections of layers
containing contiguous clouds that are separated by cloudless layers are randomly
overlapped (e.g., Geleyn and Hollingsworth 1979). This approach has become
the paradigm despite it being an extreme approximation that depends on model
vertical resolution, and systematically underestimating total cloud fraction and
atmospheric reflectance (see Barker et al. 2003).

1.3.4 When is the two-stream approximation applicable?

As mentioned at the beginning of the previous section, the heart of two-stream
approximations is the assumption that the medium and boundary conditions are
uniform. Since this applies to individual layers, vertical inhomogeneity is not an
issue, at least when layers are homogeneous slabs, as the atmosphere can be par-
titioned vertically into as many homogeneous layers as one sees fit (Wiscombe
1977). Likewise, it is usually appropriate to use two-stream approximations for
computation of flux profiles for cloudless atmospheres. This is because horizon-
tal variations in air density across regions the size of GCM cells are typically
very small, and hence so too are variations in scattering efficiencies. Moreover,
variations in absorbing gases are generally of second-order importance too, and
so use of mean mixing ratios to compute extinction coefficients, and optical
depths, are appropriate. The same goes for aerosols in cloudless atmospheres as
their concentrations are generally in the linear-response regime for reflectance
and transmittance. If the underlying surface albedo is inhomogeneous, simple
linear averaging of albedo and using the result in a two-stream approximation
will lead to errors (see Barker 2005), but again, these errors are most often
second-order.

Where standard two-streams do encounter serious troubles, however, are with
realistic cloudy atmospheres. This is because most portions of cloudy atmo-
spheres that span domains the size of typical GCM cells are horizontally inho-
mogeneous with fluctuations that often bridge the nonlinear response regime for
reflectance and transmittance. As such, assumptions upon which two-streams
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are based are often seriously violated. Since these are extreme assumptions,
one can expect systematic errors which are the most offensive errors for a dy-
namical model as they manifest themselves as phantom forcings. That is, their
presence goes undetected because while the two-stream itself might be working
perfectly, the dynamical model may demonstrate unreasonable behaviour that
could prompt adjustments to be made to unrelated parameters. To make mat-
ters worse, clouds are neither totally uncorrelated nor perfectly correlated in the
vertical and this confounds attempts to vertically link horizontally inhomoge-
neous cloudy layers. Furthermore, the layers that a GCM is partitioned into are,
for all intents and purposes, arbitrary and so cloud layers in a GCM are not
layered clouds that get reported by observers.

Regarding horizontal fluctuations, the bias resulting from use of a regular
two-stream can be demonstrated easily. Figure 1.4 shows albedo for two values
of optical depth τ1 and τ2. If these values occur with equal probability, mean
optical depth is simply (τ1 + τ2) /2. If one operates on this mean value with
the two-stream one gets an albedo that is sytematicaly greater than the result
obtained by operating on each value separately and averaging the responses.
This off-set is known as the homogeneous bias. It can be stated generally by
Jensen’s integral inequality (Gradshteyn and Ryzhik 1980) as

∫ ∞

0
p(τ)Rpp(τ) dτ � Rpp

(∫ ∞

0
τp(τ) dτ

)
= Rpp(τ) . (1.37)

For transmittance the inequality is reversed because the concavity of the response
function is opposite that for reflectance.

Fig. 1.4. Schematic showing albedo R for a plane-parallel, homogeneous cloud layer
as a function of optical depth τ . Two equally likely values τ1 and τ2 yield responses
R(τ1) and R(τ2) which when averaged produce a mean albedo that is less than that
obtained by R operating on mean optical depth (τ1 + τ2)/2.
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Fig. 1.5. Plot in the upper left shows concentration of cloud droplets recorded by an
aircraft flying 1900 m above the former Soviet Union on Dec. 6, 1983. Plots beneath
this one show cloud liquid water content (LWC), droplet effective radius, and extinction
coefficient. Plot on the right shows the droplet size distributions for two sections of the
flight as shade-coded on the plot in the upper left. (Data courtesy of A. Korolev, 2002.)

Figure 1.5 shows an example of data collected along a 2.5 km level transect
by an instrumented aircraft. It shows that cloud droplet concentration, liquid
water content, droplet size distribution, and hence extinction coefficient all vary
at all scales. Since situations like this have be expected to occur at unresolved
scales in GCMs, it is clear that the homogeneous assumption is untenable (cf.
Clothiaux et al. 2005).

Demonstrating limitations of two-streams, or plane-parallel models in gen-
eral, to vertical overlap of fractional cloud is not as simple. The most common
assumption made in GCMs is that when clouds are separated by a cloudless layer
they are randomly overlapped, and that when they are in contiguous layers they
are maximally overlapped. The latter condition can be confusing. Take for ex-
ample the three layer system shown in Fig. 1.6 with layer cloud amounts Ai.
The top left shows true maximal overlap for contiguous clouds. Here there are
three possible combinations of total cloud optical depth. The top right shows
what happens when one adheres to the maximum-random overlap rule where
cloud common to all three layers are maximally overlapped but the overhanging
portions in layers 1 and 3 are randomly overlapped. Now there are four combi-
nations of total cloud optical depth. Clearly these scenarios have different total
cloud fractions and distributions of vertically integrated optical depth, and so
their radiative responses will differ too (see Barker et al. 1999).

In general, however, there is no reason to assume that clouds cut into ar-
bitrary layers, as they are in a GCM, will abide by the vertical resolution-
dependent maximum-random overlap rule, whatever one’s interpretation of it
might be. Rather, one can expect something more general like that shown in the
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Fig. 1.6. Schematic in the upper left shows three contiguous layers of cloud in max-
imum overlap configuration. Cloud fractions are A1, A2, and A3. Fractional amounts
for the three distinct vertical integrals are listed beneath the schematic. The schematic
in the upper right shows the same layer cloud fractions in maximum-random overlap
mode. Lower schematic shows an example of the same clouds overlapping in a general
manner where all seven possible vertical combinations of cloud are realized.

lower part of Fig. 1.6. While this might not differ much from maximum over-
lap if the three layers are thin, one can expect large differences when there are
many more than three layers that extend over a significant fraction of the lower
atmosphere; such as with towering convective clouds where a spectrum of clouds
in various stages of life can be expected to occur for domains the size of GCM
cells (e.g., Hogan and Illingworth 2000; Mace and Benson-Troth 2002; Stephens
et al. 2004).

1.3.5 Strategies to extend two-stream approximations

Again, because the two-stream is reasonably accurate and computationally very
efficient, several attempts have been made to extend its range of application to
include horizontally inhomogeneous clouds and various vertical overlap assump-
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tions. In this section, the most popular methods, all of which have been used in
GCMs, are reviewed and critiqued.

All of these methods are based on the assumption that domain-average re-
flectance (or transmittance, absorptance, or flux in general) can be computed
as

〈R〉 = (1 −Ac) 〈Rclr〉 +Ac 〈Rcld〉 , (1.38)

where Ac is layer cloud fraction, and 〈Rclr〉 and 〈Rcld〉 are mean reflectances
associated with the clear and cloudy portions of the layer, respectively. The
basic idea here is that radiation that interacts with the cloudy portion of a layer
does not interact with the clear portion, and vice versa (cf. Stephens 1988). In
this sense, (1.38) is fundamentally an ICA. Moreover, (1.38) relies completely on
the concept of cloud fraction which is often discussed and presented in passing
without question or hesitation yet as soon as one attempts to describe it with any
formality, one recognizes that it is fraught with confusion and misinterpretation.
The only reason we passively accept it in (1.38) is because we are approaching the
problem with a plane-parallel vision of atmospheric layers and have computation
of average fluxes for large domains in mind.

1.3.5.1 Gamma-weighted two-stream approximation (GWTSA)

This model is an example of an explicit independent column approximation
(ICA). Its starting point is to rewrite the area integral in (1.14) in its distribution
form as

〈Rcld〉 =
∫ ∞

0
p (τ)R1D (τ) dτ , (1.39)

where p (τ) is a normalized density function that describes variations in τ over
a domain (Ronnholm et al. 1980; Cahalan 1989; Stephens et al. 1991). There
are several ways to solve (1.39) depending on the functional forms of p (τ) and
R1D (τ). Clearly, if the forms are intractable and require numerical integration,
(1.39) is not tenable for use in GCMs. Several studies (e.g., Barker et al. 1996)
using satellite-inferred values of τ and cloud-resolving model data have shown
that for domains the size of those used in typical GCMs it is reasonable to
represent p (τ) by a gamma distribution defined as

pγ (τ) =
1

Γ(ν)

(ν
τ

)ν
τν−1 e−ντ/τ , (1.40)

where ν is related to the variance of τ , and Γ(ν) is the gamma function. Note
that if particle size distribution is assumed to be constant, (1.40) applies to cloud
water content and water path too.

By substituting the generalized, non-conservative scattering, two-stream ap-
proximation for collimated irradiance given by (1.23) and (1.24) along with (1.40)
into (1.39) leads to the gamma-weighted two-stream approximation (GWTSA)
(Barker 1996) in which

〈Rcld〉 = φν1
ω0

α
[r+F (β, ν, φ1) − r−F (β, ν, φ2) − rF (β, ν, φ3)] (1.41)
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and

〈Tcld〉 =
(

ν

ν + τ/µ0

)ν
− φν1

ω0

α
[t+F (β, ν, φ4) − t−F (β, ν, φ5) − tF (β, ν, φ6)]

(1.42)
where

F (β, ν, φ) =
∞∑
n=0

βn

(φ+ n)ν
; |β| ≤ 1, β �= 1, ν > 0,

which is known formally as the Lerch transcendent, and

φ1 =
ν

2kτ
; φ4 = φ1 +

1
2kµ0

φ2 = φ1 + 1 ; φ5 = φ4 + 1

φ3 = φ4 +
1
2

; φ6 = φ1 +
1
2
.

As ω0 → 1.0, β → 1 and one approaches the removable singularity in (1.41)
and (1.42). Therefore, substituting (1.27) and (1.40) into (1.39) yields the con-
servative scattering GWTSA as

〈Tcld〉 =
(

ν

γ1τ

)ν [
(γ1µ0 + γ4) G

(
1 − ν,

ν

γ1τ

)

− (γ1µ0 − γ3) G
(

1 − ν,
νµ0 + τ

γ1µ0τ

)]

= 1 − 〈Rcld〉

(1.43)

where
G (1 − ν, x) = exΓ (1 − ν, x) .

For diffuse irradiance, the non-conservative solutions are

〈rcld〉 = φν1
γ2

k + γ1
[F (β, ν, φ1) − F (β, ν, φ2)] (1.44)

and
〈tcld〉 = φν1

2k
k + γ1

F (β, ν, φ6) , (1.45)

while the conservative scattering solution is (Oreopoulos and Barker 1999)

〈rcld〉 = 1 −
(

ν

γ1τ

)ν
G
(

1 − ν,
ν

γ1τ

)
= 1 − 〈tcld〉 . (1.46)

Naturally, other solutions are possible for different representations of p(τ).
For instance, if p(τ) is approximated by a beta distribution, one ends up with
rather intractable solutions for 〈Rcld〉 and 〈Tcld〉 involving hypergeometric func-
tions. A closed-form solution using a lognormal distribution for τ has not been
found as yet. Likewise, it is not known whether closed-form solutions exist for a
gamma-weighted four-stream.
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To conclude, the attraction of this approach is that as long as one is willing
to accept that the underlying distribution of τ can be represented by pγ(τ), and
that the ICA is a reasonable benchmark for GCM-style radiative transfer models
to aim for, the GWTSA represents, by definition, an exact solution for single
layers. The GWTSA, for both SW and LW radiation, is being used currently
in the CCCma GCM (Li and Barker 2002; Li et al. 2005). It should be noted,
however, that the GWTSA encounters problems when it comes to linking layers
(see Oreopoulos and Barker 1999).

1.3.5.2 Effective thickness approximation (ETA)

Following from (1.37), an obvious approach to approximate 〈Rcld〉 is

〈Rcld〉 ≈ Rpp [f(τ)] ,

where f(τ) � τ represents some transformation to τ . What makes this approach
desirable is that it utilizes directly the efficient two-stream solution with, ideally,
only a minor adjustment to its input.

Davis et al. (1990) hypothesized that 〈Rcld〉 could be approximated as

〈Rcld〉 ≈ Rpp(τ δ) , (1.47)

where δ was referred to as a co-packing factor. The authors determined δ from
Monte Carlo simulations for very heterogeneous fractal cloud models based on
singular cascades. This parametrization found its way into at least one opera-
tional GCM (McFarlane et al. 1992). In general δ ≤ 1, but for τ < 1 δ has to
exceed 1 or its purpose is defeated. This produces the desired effect by reducing
the value of Rpp(τ), but given its simplicity and high level of parametrization,
results can be expected to be, at best, very approximate.

Cahalan et al. (1994) advanced the potential applicability of the ETA, in
principle for stratocumulus layers only, by noting that expansion of Rpp in a
Taylor series about log10 τ and averaging over all cells of a bounded cascade
model yields

〈Rcld〉 = Rpp (ητ) +
∞∑
n=1

M2n
∂2nRpp (ητ)
∂ (log10 τ)

2n , (1.48)

where M2n is related to the 2nth moment of log10 τ , and

η =
eln τ

τ
� 1 (1.49)

is the reduction factor. Cahalan et al. presented results for (1.48) in its simplest
form of

〈Rcld〉 ≈ Rpp(ητ). (1.50)

Cahalan et al. (1994, 1995) estimated η to be roughly 0.6 to 0.7 for marine
boundary layer clouds off the coast of California and on Porto Santo Island.
These estimates were obtained by compositing several days’ worth of 30 s or
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1 min observations of cloud LWP inferred from microwave radiometer data. By
compositing data, however, the PPH bias can be made arbitrarily large as more
and more variability becomes unresolved and subsumed into η, or any other mea-
sure of variance. Hence, values of η that are arrived at by compositing several
days of data are applicable to GCMs that call their ETA just once a day or so.
Most GCMs call their radiation codes at least once per hour, so if they used val-
ues of η derived from compositing over extended periods, they would effectively
double-count the impact of cloud variability. Subsequent analyses indicate that
for most overcast marine boundary layer clouds, η ≈ 0.9 (Barker et al. 1996;
Pincus et al. 1999; Rossow et al. 2002). Nevertheless, (1.50) has been used in
operational GCMs. For example, Tiedtke (1996) used η ≈ 0.7 for all clouds all
the time.

1.3.5.3 ETA vs. GWTSA and the assumption
of underlying distributions for τ

Based on the previous paragraph, one might conclude, correctly, that there is
still confusion regarding description of unresolved cloud structure in GCMs. This
is compounded by the fact that GCMs require information on a per-layer basis,
not for entire cloud fields as is often estimated from passive satellite imagery
(e.g., Barker et al. 1996; Oreopoulos and Davies 1998). Moreover, even if one
felt comfortable about setting values of ν and η, there is still the question: what
is the underlying distribution of τ? In this subsection we explore the importance
of this question.

Basically, there are two situations: a non-analytic representation for p(τ),
or an assumed analytic form for p(τ). In either case, one could compute, at
potentially great computational expense, the ICA solution using (1.16) or (1.39),
respectively. On the other hand, it is easy to compute corresponding statistics
such as τ , ln τ , σ, ν, and η. Once computed, they can be used directly in either
the ETA or the GWTSA. For the latter, one makes the explicit assumption that
for computation of mean radiative fluxes, the gamma distribution is suitable
regardless of what p(τ) the parameters come from. At the same time, the gamma
distribution could also drive estimates of η to be used in the ETA.

For tractability, Rpp is represented here by Coakley and Chýlek’s (1975)
‘model 1’ approximation for ω0 = 1 in which

Rpp(τ) =
β(µ0)τ

µ0 + β(µ0)τ
= 1 − Tpp(τ) , (1.51)

where β(µ0) is the zenith angle dependent backscatter function (Wiscombe and
Grams 1976). When an analytic distribution for τ is used, it is assumed to be
pγ(τ). On the other hand, non-analytic distributions of τ are realized by the
bounded cascade (BC) model of Cahalan et al. (1994). For the most part, the
variability of τ for the BC model depends on the fractal parameter f0 which is
related to η and M2 [see (1.48)] as
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η =

√√√√ ∞∏
n=0

(1 − f2
0 c

2n)

and

M2 =
∞∑
n=1

[
1
2

log
(

1 + f0c
n

1 − f0cn

)]2

,

where c ∈ (0, 1] but is generally set to 2−1/3.
Consider first the distributions produced by the BC model. These distribu-

tions resemble lognormal distributions, and for f0 � 0.3 they resemble gamma
distributions too. It is most likely that for layers with dimensions resembling
those found in GCMs f0 ∈ [0.2, 0.7]. Figure 1.7 shows albedo as a function of
f0 for several models. ICA values were computed by (1.16) and differences be-
tween ICA and homogeneous are known as the homogeneous bias. The ETA
proper is represented by (1.50) where η were computed directly from BC data
using (1.49). For µ0 = 0.5 and τ = 10, this model does extremely well, but for
µ0 = 1 it overestimates the homogeneous bias systematically. Inclusion of the
second term in (1.48), with M2 computed directly from data, improves estimates
notably. For µ0 = 1, however, it still underestimates the ICA systematically.

At this point, assume that the underlying distribution of τ is pγ(τ). It can
be shown that (1.48) can be expressed as

〈Rcld〉 = Rpp(ητ) +
[

1
2 ln 10

ψ1(ν)
]
∂2Rpp (ητ)
∂(ln τ)2

+ · · · , (1.52)

where

η =
eψ0(ν)

ν
, (1.53)

and

ψn(ν) =
dn+1

dνn+1 ln Γ (ν)

is the polygamma function. Although ψn(ν) are easy to parameterize, multiple
derivatives of Rpp are tedious in general. Substituting (1.51) into (1.52) and
retaining just the first two terms gives

〈Rcld〉 ≈ Rpp(ητ)

{
1 +

µ0 [µ0 − β(µ0)ητ ]
2 ln (10) [µ0 + β(µ0)ητ ]

2ψ1(ν)

}
. (1.54)

Even for (1.51) the third term is already too intractable to be of much use. Fig-
ure 1.7 shows that when only the leading term in (1.54) is used with η computed
by (1.53) and ν by the method of moments (mom), which is defined as

νmom =
(
τ

σ

)2

,

where σ is standard deviation of τ , the situation worsens greatly. This is because
νmom is impacted too much by extreme values of τ and so corresponding η are
too small as are albedos.
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Fig. 1.7. Albedo for non-absorbing clouds as a function of the bounded cascade model’s
fractal parameter f0 (f0 = 0 homogeneous) for two solar zenith angles and τ = 10. See
the text for a description of the various model results shown here.

The maximum likelihood estimate (MLE) of ν is

ψ0(νmle) + ln
(

τ

νmle

)
− ln τ = 0, (1.55)

which upon rearranging as

eψ0(νmle)

νmle
=
eln(τ)

τ

verifies that explicit computation of η from data yields the same reduction factor
as does use of the gamma distribution’s MLE value for ν in (1.53). In general,
νmle differs from νmom. Interestingly, Fig. 1.7 shows that when one uses η com-
puted directly from data, or by (1.53) with νmle, in conjunction with the second
term of (1.54), results generally improve over the use of two terms with param-
eters set directly from data (especially for µ0 = 1).

The other end of the spectrum is to assume that distributions of τ are in
actuality gamma distributions. In this case νmle = νmom. Substituting (1.40)
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Fig. 1.8. Conservative scattering albedo of an overcast cloud layer with τ = 10 as a
function of cosine of solar zenith angle µ0. Results are shown for two inhomogeneous
clouds with ν and η as listed at the top of each plot, as well as for their homogeneous
counterpart which corresponds to ν → ∞ and η = 1.

and (1.51) into (1.39) and evaluating the integral yields

〈Rcld〉 = 1 − eξ+ν ln ξΓ (1 − ν, ξ) = 1 − 〈Tcld〉 , (1.56)

where
ξ =

νµ0

β(µ0)τ
,

and Γ(1 − ν, ξ) is the incomplete gamma function. Equation (1.56) represents
one of the simplest forms of the GWTSA. By definition, the GWTSA is now
equivalent to the ICA and so, in this situation, produces perfect estimates of the
homogeneous bias. Now the tables are turned and, as Fig. 1.8 shows, it is the
single term ETA that produces poor estimates of albedo. In fact, it performs
well only when ητ ≈ µ0/β(µ0) or when M2n are small (i.e., variability is weak).
Again, however, inclusion of the second term improves estimates significantly
over those of the simple ETA.
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1.3.5.4 Renormalization of optical properties

Cairns et al. (2000) developed an approximate solution that is based on assump-
tions similar to Stephens’s (1988) method. First, they assume that the number
concentration of scatters can be described by

n(x) = n+ n′(x) (1.57)

where n is domain-average number concentration, n′ is a local fluctuation at
position x, and that fluctuations are isotropic in three-dimensions. Averaging the
3D radiative transfer equation over the domain leads them to domain-average
intensity I(x,Ω) given by

Ω · ∇I(x,Ω) + σn

∫
4π
B(x · Ω′)I(x,Ω′) dΩ′

= −σ
∫

4π
B(Ω · Ω′)n′(x)I(x,Ω′) dΩ′ ,

(1.58)

where
B(s · s′) = δ(Ω · Ω′ − 1) − ω0p(Ω · Ω′),

and Ω is angular direction. In an attempt to close (1.58), Cairns et al. rewrite
(1.58) as an integral equation involving a Green’s function, perform a pertur-
bation expansion, and re-sum the series. This effectively decouples the term
n′(x)I(x,Ω′) in (1.58). They then invoke the nonlinear approximation, and as-
suming the effects of fluctuations are local (i.e., not long-range), they are able
to recover the LHS of (1.58) which can be solved as though the medium was
homogeneous with the following transformed domain-average optical properties:

σ′ = σ (1 − ε) ,

ω′
0 = ω0

[
1 − ε

1 − ε
(1 − ω0)

]
,

ω′
0g

′ = ω0g

[
1 − ε

1 − ε
(1 − ω0g)

]
,

(1.59)

where
ε =

1
2

(
q −

√
q2 − 4V

)
,

and
q =

1 + σlc
σlc

,

where V is relative variance of n, and lc is effective correlation length of the
variations. When σlc ≈ 1, particle density fluctuations follow a lognormal dis-
tribution. In this case, however, only moderate fluctuations are allowed (i.e.,
V < 1). For a more thorough assessment of this method, see Barker and Davis
(2005).

From Cairns et al.’s (2000) initial formulation, it would appear that long-
range fluctuations in n(x) are neglected thereby rendering the transformations
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in (1.59) applicable on relatively small scales such as individual cells of a stra-
tocumulus or individual cumuli. Cairns et al. allude to the ICA being more
suitable at describing the effect of fluctuations larger than the mean diffusion
length. Nevertheless, Rossow et al. (2002) applied (1.59) to ISCCP (International
Satellite Cloud Climatology Project) data, which has a horizontal resolution of
∼5 km, and defined ε as

ε = 1 − τ̂

τ
, (1.60)

where

τ̂ = R−1
pp

[
1
N

N∑
n=1

R1D (τn)

]

in which N is the number of satellite pixels in a large domain, and τn is cloud
optical depth inferred for the nth pixel. In the appendix to Rossow et al. (2002),
it was shown that an accurate approximation relating νmle [see (1.55)] and ε
is

νmle =
1

ε− ln (1 − ε)
. (1.61)

While Cairns et al.’s (2000) model does not suffer from the same ailment
that Stephens’s (1988) does (i.e., potential violation of the conservation of en-
ergy; see Barker and Davis 2005), it would appear from their initial presentation
that it is meant to be applied at small scales; perhaps superimposed onto an-
other model designed to account for fluctuations at larger scales, such as the
GWTSA.

1.3.5.5 The Monte Carlo Independent Column Approximation
(McICA)

Several studies have shown that differences in estimates of domain-averaged flux
profiles predicted by the ICA and 3D radiative transfer models are usually small
(Cahalan et al. 1994; Barker et al. 1999, 2003; Benner and Evans 2001). So,
in light of sketchy descriptions of unresolved clouds that are available to GCM
radiation codes, the ICA seems to be a suitable and tractable standard for 1D
radiation codes despite its neglect of 3D transfer. The 1D models that address
unresolved horizontal fluctuations that have been discussed thus far, and other
operational methods that involve vertical linking of layers, lead to: i) additional
computation relative to the straight-up, multi-layer two-stream model; ii) lim-
ited, and unrealistic, descriptions of unresolved cloud fluctuations (fluctuations
for other components are rarely, if ever, addressed); and iii) most important,
biases relative to the full ICA. In an attempt to circumvent these limitations,
Barker et al. (2002) and Pincus et al. (2003) introduced the Monte Carlo In-
dependent Column Approximation (McICA) which segregates descriptions of
surface–atmosphere structure from the GCM’s radiative transfer algorithms.
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The essence of McICA is stochastic sampling of subcolumns that are unre-
solved by a GCM as one sweeps across the necessary spectral integral. To begin,
full ICA, domain-average monochromatic radiative fluxes are computed as

F =
1
N

N∑
n=1

Fn , (1.62)

where Fn is monochromatic radiative flux for the nth subcolumn of the domain.
With the correlated k-distribution (CKD) method (e.g., Fu and Liou 1992),
broadband radiative fluxes for the nth subcolumn are computed as

Fn =
K∑
k=1

Fn,k , (1.63)

where Fn,k is the contribution from the kth quadrature point in k-space. Com-
bining (1.62) with (1.63) yields domain-average, broadband fluxes for the full
ICA as

F =
1
N

N∑
n=1

K∑
k=1

Fn,k. (1.64)

GCM radiation codes typically have K ∼ 30–100 so even for a modest value of
N , the double sum in (1.64) is intractable in terms of CPU usage.

The McICA method approximates (1.64) simply as

F̂ =
K∑
k=1

Fnk,k , (1.65)

where Fnk,k designates a monochromatic radiative flux for a randomly selected
subcolumn, denoted as nk, and the circumflex signifies a single sample. The
McICA solution (1.65) equals the ICA solution only when all N columns are
identical or when N = 1. In general, McICA’s incomplete pairing of subcolumns
and spectral intervals ensures that its solution will contain conditional random,
but unbiased, errors.

Before proceeding with operational details of this method, it is instructive
to show that in the limit of taking T → ∞ samples of (1.65), the ensemble

average
〈
F̂
〉

is identically equal to the ICA. This is easily seen using the CKD
method: if there are Nc cloudy columns to select from, then as T → ∞, the nth
cloudy column and kth quadrature point will be paired fn,k times such that the

expectation of
〈
F̂
〉

is

E
(〈

F̂
〉)

= lim
T→∞

1
T

{f1,1F1,1 + · · · + fNc,KFNc,K} . (1.66)

Since samples are drawn uniformly, all fn,k = T/Nc which reduces (1.66) to
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E
(〈

F̂
〉)

=
1
Nc

{F1,1 + · · · + FNc,K} (1.67)

=
1
Nc

K∑
k=1

Nc∑
n=1

Fn,k ,

which is the ICA. Hence, McICA is entirely unbiased with respect to the ICA.
Since McICA completely decouples the transfer solver from descriptions of un-
resolved fluctuations, a GCM using McICA is capable of efficiently performing
sensitivity studies for a wide range of subgrid-scale assumptions in an unbiased
manner.

Equation (1.62) can be partitioned into clear and cloudy contributions, as
with all models discussed thus far, and rewritten as

F̂ = (1 − Ctot) Fclr + Ctot

K∑
k=1

F cldnk,k
, (1.68)

where Ctot is total cloud fraction for the GCM column, and clr and cld refer to
cloud-free and cloudy subcolumns respectively. Note that when aerosols, gases,
and surfaces are assumed to be horizontally homogeneous, Fclr is noise-free. Now
all K samples are devoted to cloudy subcolumns as opposed to, on average, CtotK
samples for (1.65). Hence, sampling noise for (1.68) is smaller than that for (1.65).
Although in principle, computation of Fclr makes (1.68) more expensive than
(1.65), this is a moot point as most GCMs routinely compute Fclr diagnostically
in order to compute cloud radiative effects (forcings).

McICA variance σ2 can be reduced further by taking more than K samples.
This transforms (1.68) into the more general form presented originally by Barker
et al. (2002):

F̂ = (1 − Ctot) Fclr + Ctot

K∑
k=1

[
1
Nk

Nk∑
n=1

F cldn,k

]
, (1.69)

where the total number of samples is

N ′ = K +
K∑
k=1

(Nk − 1) = K + M .

As such, radiative fluxes for point k are computed for Nk randomly selected
cloudy subcolumns, and results are averaged for regular CKD summation.

Räisänen and Barker (2004) presented a procedure to find the optimal set
of Nk when McICA noise arises overwhelmingly from clouds. The optimal set
of Nk depends on the quantity whose random errors are to be minimized. In a
GCM, different predefined sets of Nk could be used based on the state of the
Earth–atmosphere column. The most obvious distinction is between land and
ocean surfaces. Land surfaces respond rapidly to changes in net solar radiation
during daytime, whereas sea surface temperatures change slowly. Therefore, for
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the SW, it is probably best to base optimization of Nk on CRE at the surface
when over land during Sun-up periods but on CRE for lower atmospheric heating
when over ocean. Moreover, separate sets of Nk could be defined based on land
surface type (e.g., vegetated or snow and ice surfaces). In the LW, optimization
of Nk should probably be based on CRE of atmospheric heating regardless of
location and time.

Given the size of GCM grid-spacings and the paucity of information regard-
ing subgrid-scale cloud structure, it is natural to expect domain-averaged ra-
diative heating profiles to be characterized by conditional distributions whose
widths are wider than that of the Dirac delta distribution. This natural noise,
or uncertainty, buys some leeway for random noise to be present in subgrid-scale
parametrizations. Beyond this natural noise, it may be that GCMs can consume
additional unbiased random noise generated by subgrid-scale parametrizations
with little, or no, statistically significant impact on performance. The obvious,
and simple, argument for this is that noise of this type, at or near the spatial and
temporal inner-scales of a GCM, is incapable of spawning organized structures
that significantly affect the trajectory, and perhaps even one-point statistics, of
the overall simulated climate.

Figure 1.9 shows the impact of McICA noise on screen temperature simulated
by two GCMs. The simulations were 15 days long and 10-member ensembles
were run for each rendition of McICA. The benchmark simulation used (1.69)
with M = 1000 which almost squelches random noise entirely. This plot shows
that the CCCma GCM is insensitive to McICA noise as the fraction of the globe
exhibiting differences, relative to the benchmark simulation, that are statistically
significant at the α% confidence level is always close to 1−α regardless of McICA
noise level. These fractions of statistically significant differences are expected
for two samples drawn at random from the same population. For the CAM-
3 GCM it is clear that it is impacted by noise as noisy renditions of McICA
exhibit statistically significant differences over a large portion of the global.
However, this sensitivity can be reduced to effectively nothing by using (1.69)
with M = K/2.

1.3.6 Surface albedo

When discussing problems related to fluctuations that are unresolved by con-
ventional GCMs, clouds receive, by far, the most attention. But fluctuations in
surface type deserve mention too. Spectral surface albedos αs (λ) are used as
lower boundary conditions for atmospheric radiative transfer models. What is
usually buried under the convenient blanket of surface albedo is actually the
fraction of photons not absorbed by anything below either a water surface, a soil
surface, or a vegetation canopy. Several studies have examined the reflectance
properties of surfaces in detail (e.g., Hapke 1981; Ross 1981; Preisendorfer and
Mobley 1986; Verstraete 1987). The purpose of this section is to briefly comment
on just a few of the myriad of problems facing specification of surface albedo in
global models.
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Fig. 1.9. Plots on the left show mean screen temperature (K) for the CCCma GCM
and the CAM3 GCM for 15-day simulations using fixed SSTs and sea-ice cover. These
results are for benchmark simulations that used almost noiseless versions of McICA.
Upper plots in the two sets of plots to the right show screen temperature differences
between the benchmarks and three versions of McICA; going from left to right, and as
indicated by the font size of the map titles, McICA noise begins large with 1COL [a
single sample is drawn to represent all Nk in (1.65)], diminishes to intermediate values
for CLDS [which uses (1.68)], and finally to small values for SPEC [using (1.69) with
M = K/2]. See Räisänen and Barker (2004) for details. Lower plots on indicates area
where differences were significant at the 95% and 99% confidence levels.

Consider first albedo for land surfaces. Figure 1.10 shows visible and near-
IR αs (λ) for various surface types at θ0 near 60◦. Clearly, broadband radiative
transfer models face the same problem with surface albedo as they do with atmo-
spheric constituents: they require spectrally-weighted values, but the necessary
spectral irradiances needed to compute mean values, for relatively broad bands,
are not available. Generally, simple uniform weightings are applied and surfaces
are assumed to be perfectly Lambertian. In many applications, only a gross
distinction is drawn between albedo in a few bands across the solar spectrum
(e.g., <0.7 µm and >0.7 µm). Likewise, dependencies on θ0 are generally crude
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Fig. 1.10. Examples of spectral surface albedos for various surface types as functions
of wavelength. These data were collected during spring in OK, USA. (Data courtesy
of Z. Li 2000.)

and often do not distinguish between direct and diffuse albedos (but again, this
partition actually requires solution of the radiative transfer algorithm).

Owing to the fact that roughly two-thirds of Earth’s surface is covered by
open water, albedo of water surfaces is an important quantity in a global model.
There have been several studies that examined how the albedo of water sur-
faces with wind-generated waves depends on µ0 and wind speed |v| (e.g., Cox
and Munk 1956; Payne 1972; Preisendorfer and Mobley 1986). Cox and Munk’s
method assumes that the slopes of wave facets follow a Gram–Chevalier (i.e.,
Gaussian-like) distribution that depends on |v| and that only Fresnel reflection
need be considered. Despite it being a single-reflection model that does not ac-
count for spatial correlation of wave facets, it has been used successfully to infer
|v| from observations of sun glint (its original intention).

Figure 1.11 shows a curve fit to Payne’s observations (Briegleb et al. 1986)
along with results from Cox and Munk’s model (Hansen et al. 1983). Clearly
the Cox and Munk parametrization captures the essence of ocean albedo. It can,
however, be augmented slightly to account for the effects of whitecaps (Monahan
and O’Muircheartaigh 1987), suspended particulates, and bottoms (in shallow
areas). Multiple reflection effects, which depend directly on spatial structure of
wave forms, are likely to be important for radiances, inside certain ranges of
illumination and viewing, but are second-order as far as fluxes are concerned.

Obviously, if one believes there is an important feedback to capture between
ocean absorption of solar radiation and near-surface winds, it is essential that a
wind-speed dependent description of ocean albedo be employed in global models.
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Fig. 1.11. Dashed line shows a curve fit to observed ocean albedo (Payne 1972). Other
lines are predictions by the Cox and Munk wave slope approach for two wind speeds
|v| assuming Fresnel reflection.

Likewise, at a similar level of concern, there should be an explicit dependence on
the quality of illumination; that is, a distinction between direct- and diffuse-beam
surface irradiance.

Computation of albedo for a totally snow-covered surface is a fairly straight-
forward problem because snow is optically dense. As a result, plane-parallel,
homogeneous conditions can be satisfied fairly easily which makes for reliable
application of two-stream approximations provided one has a reasonable idea of
crystal size and amounts of impurities (see Warren 1982). Complications and
biases arise, however, when dealing with snow amidst vegetation. For example,
masking of snow by vegetation, and vice versa, exhibits a strong dependence on
illumination angle (e.g., Otterman 1984). Another example is snow in mountain
regions. Assume that almost all the snow exists in shaded areas. If the sky is
overcast with only diffuse surface irradiance, mean albedo would be close to a
linear weighting based on fractional area of snow and exposed rock. If the ma-
jority of surface irradiance is direct-beam, mean surface albedo would be close
to that of the rock if the majority of snow is on the shaded side. This points
to a more general issue: the proper mean albedo to be used in a 1D radiative
transfer model is not the areal-weighted mean, but rather the irradiance- and
areal-weighted mean. To do this properly, however, requires a solution for surface
irradiance beforehand, which does not exist, as well as consideration of surface
tilt geometry.

It is expected that albedo of sea-ice will require increasing attention as rep-
resentation of sea-ice in GCMs continues to improve (Kreyscher et al. 2000; Bitz



1 Solar radiative transfer and global climate modelling 35

Fig. 1.12. Plot on the left shows imagery of sea-ice in Northhumberland Strait, Canada
(image is about 0.5 km wide). Upper plot on the right shows normalized ice altitudes
as detected by a helicopter-mounted laser altimeter tracking down the centre of the
image on the left. Lower plots on the right show a map of the transect and frequency
distribution of ice altitude. (Data courtesy of I. Peterson, 2001.)

et al. 2002). It may be that different types of ice can be diagnosed and a µ0 de-
pendence of albedo assigned to each type. Figure 1.12 shows an example of the
complexity of sea-ice. Presumably the roughness characteristics of these surfaces
impacts albedo? The same goes for wind-generated sastrugi that exist over vast
tracts of Antarctica (see Warren et al. 1998). However, we are undoubtedly a
long way off performing actual on-line radiative transfer calculations for surfaces
as complex as these.

Regarding representing radiative transfer for vegetated surfaces inside GCMs,
much work has been done by Pinty et al. (2006). The essence of their work is to
utilize the standard two-stream solutions with optical properties suitably mod-
ified to represent the discrete scattering elements found in vegetation canopies
and to alter these quantities in such a way that the two-stream mimics corre-
sponding results obtained by 3D Monte Carlo simulations. The attraction of this
approach is that the surface system becomes an extra layer at the base of the
regular atmospheric column. So instead of an atmospheric radiative transfer code
using N layers, it uses N + 1 layers with an underlying description of ground
(not collective surface) albedo. Moreover, if there is a distribution of surface-
vegetation types inside a GCM column, they can be included in a stochastic
subgrid-scale generator (cf. Räisänen et al. 2004) and used in conjunction with
the McICA approach.
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1.4 1D vs. 3D radiative transfer for cloudy atmospheres:
should global modellers be concerned?

Thus far only results from 1D radiative transfer codes have been shown and dis-
cussed. The assumption all along has been that the ICA is a justifiable standard
for GCM-style radiation solvers to aim for. This goal has been obtained by the
Monte Carlo class of ICA codes. The lingering question, however, is: are system-
atic flux and heating rate differences between the ICA and full 3D important
for numerical simulation of climate? We are just entering an era with super-
computing that enables us to address this question, and progress has already
been made. Two points of concern are reiterated here: i) are domain-average
fluxes provided by the ICA sufficient; and ii) how important are interactions be-
tween cloud and radiation at scales that are unresolved by conventional GCMs?
The former addresses 3D radiative transfer squarely, while the latter, which is
essentially a 3D issue, can be addressed to some extent by the ICA.

1.4.1 Domain-average fluxes

When contrasting 1D and 3D radiative transfer it is helpful to study details
at scales finer than large domain-averages to help appreciate differences. As an
example, consider the 2D cloud shown in Fig. 1.13. This stratiform cloud is
moderately inhomogeneous for its range of liquid water path (LWP) is fairly
large yet its physical aspect ratio is not. Vertically-projected cloud fraction over
this 10 km domain is 0.9, mean visible optical depth is 18.9, and corresponding
νmom is 2.6. Even water vapour content, as expected, varies in the horizontal.
Figure 1.14 shows heating rates for 3D transfer and the ICA at several different
solar zenith angles. In a plot like this differences between 3D and ICA transfer
are obvious. Most notably, ICA casts cloud shadows vertically regardless of sun
angle. A more subtle difference is in cloud heating; clouds absorb more for 3D
transfer at small µ0 and less at large µ0.

Figure 1.15 shows corresponding domain-average values. Domain-average at-
mospheric absorptances for 3D and ICA are virtually identical despite the clear
spatial differences seen in Fig. 1.14. Albedo is overestimated very slightly by the
ICA for most µ0 (but much less so than outright neglect of variability), and
underestimated only at very small µ0 on account of side illumination for 3D
transfer (testified to in Fig. 1.14 by elimination of direct-beam transmittance at
small µ0). The centre plot of Fig. 1.15 shows that mean photon pathlengths dif-
fer little between ICA and 3D, except again at small µ0 where ICA pathlengths
are slightly longer. The rightmost plot shows that the mean numbers of times
reflected photons are scattering by droplets are essentially identical for ICA
and 3D. For transmittance, however, photons in the 3D simulation experience
fewer scattering events for all µ0, especially small µ0 where photons frequently
exit cloud sides in downward directions after few scatterings. Despite these dif-
ferences, it is still interesting to note again that domain-average atmospheric
absorptances are almost identical (see Barker et al. 1998).
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Fig. 1.13. Top plot shows visible optical depth of cloud for a 10 km section of cloud
simulated by a cloud system-resolving model with 25 m horizontal and vertical grid-
spacings. Beneath it is liquid water content, droplet effective radius, and water vapour
mixing ratio. (Data courtesy of J.-P. Blanchet, 2001).

This example serves to demonstrate what several studies have found: there
are obvious local differences between 3D and ICA, but as soon as the domain
size exceeds a few characteristic cloud cell dimensions, differences between 3D
and ICA domain-average radiative quantities diminish rapidly.

In the past, small numbers of cloud configurations were used to address dif-
ferences between 3D radiative transfer and approximate solutions (e.g., McKee
and Cox 1974; Welch and Wielicki 1985; O’Hirok and Gautier 1998; Barker et
al. 1999). Barker et al. (2003) intercompared domain-average, broadband irradi-
ances for cloudy atmospheres as computed by several 1D and 3D solar transfer
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Fig. 1.14. Heating rates for the cloud field shown in Fig. 1.13 for various solar zenith
angles θ0 (µ0 = cos θ0 are listed on the left). Left column is for 3D radiative trans-
fer while right column is for the ICA model. All calculations were performed with
a Monte Carlo photon transport algorithm; the 3D simulations used 25 m horizontal
grid-spacings while the ICA used an extremely large setting.

Fig. 1.15. Left plot shows domain-average albedo, transmittance, and atmospheric
absorptance as functions of cosine of solar zenith angle µ0 for 3D and ICA simulations
performed on the field shown in Fig. 1.13 Middle and right plots show corresponding
mean photon pathlengths (below cloudtop) and mean number of droplet scattering
events for photons that are reflected to space and transmitted to the surface.
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codes, but again used only a half-dozen or so cases. Cole et al. (2005a), how-
ever, used thousands of cloud fields that were produced by a GCM whose con-
ventional cloud parametrization was replaced by a 2D cloud system-resolving
model (CSRM). Such super-parametrized GCMs, known officially as Multi-scale
Modeling Framework (MMF) GCMs, are developing rapidly (see Randall et al.
2003). For Cole et al.’s (2005a) study, CSRM domains had 64 columns with
4 km horizontal grid-spacing ∆x, 24 vertical layers and a timestep of 20 s, and
were aligned east to west (Khairoutdinov and Randall 2003). Each CSRM was
forced by large-scale tendencies updated every GCM timestep, and provided
horizontally-averaged tendencies back to the GCM. The CSRM prognostic ther-
modynamic variables included liquid/ice water moist static energy, total non-
precipitating water, and total precipitating water. All simulations started on
September 1, 2000. Global arrays of CSRM data were sampled and saved every
9 model hours. Allowing the model a short spin-up period, radiation calcula-
tions were performed on model output for December 2000. This amounted to
solar calculations being performed on over 300,000 fields.

Figure 1.16 shows monthly-mean differences between 2D radiative transfer
and the ICA for upwelling SW at the TOA. The largest TOA differences are
associated with tropical deep convective clouds with secondary maxima across
the southern ocean storm belt partly because of excessive cloudiness and large
solar inputs. The adjacent plot shows the distribution of flux differences as a
function of latitude and µ0. Suppression of photon leakage out the sides of con-
vective clouds in the ITCZ by the ICA at large µ0 explains why it overestimates
reflected flux. Conversely, the ICA does not account for illumination onto cloud

Fig. 1.16. Differences for monthly-mean upwelling SW flux at TOA when radiation
calculations are done with the ICA and 2D radiative transfer. Global mean value is
104.7 W m−2 for the 2D case. Plot on the right shows corresponding mean values as a
function of µ0 and latitude. Solid line indicates monthly-mean µ0.
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Fig. 1.17. Monthly-mean, zonal cross-section of differences in SW heating rate between
2D radiative transfer and the ICA as a function of latitude and altitude.

sides, so at small µ0 it underestimates reflected flux (e.g., Welch and Wielicki
1985; O’Hirok and Gautier 1998).

Figure 1.17 shows a vertical cross-section of monthly-mean SW heating rate
differences between 2D and ICA. This shows clearly the impact of cloud side
illumination at cloud-bearing altitudes. Namely, when significant side illumina-
tion occurs, as with 2D transfer, clouds absorb more radiation relative to the
ICA approach.

Using data from O’Hirok and Gautier (2005), Cole et al. (2005a) also ad-
dressed the question of drawing too many conclusions from their results given
∆x = 4 km. They concluded that if ∆x was reduced to about 0.5 km, values
shown in Fig. 1.16 could roughly double in certain areas due to cloud fluctu-
ations becoming increasingly resolved. At that point, differences between 3D
radiative transfer and the ICA would begin, at times, to rival those that occur
between ICA and conventional GCM treatments (see Cole et al. 2005a; Stephens
et al. 2004).

The point to remember with conventional GCMs is that only gross descrip-
tions of cloud structure are available. Often this amounts to just mass of con-
densed water in a layer and a corresponding estimate of cloud fraction. We are
just beginning to parametrize other details like droplet concentration and size,
variance of water content, and vertical overlap rates. While one-point distribu-
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tions of clouds can be generated stochastically and used with the McICA method
(e.g., Räisänen et al. 2004), it is still an open question as to whether it is worth
going the extra step and assuming (i.e., imposing) horizontal structure which
is required to perform 3D radiative transfer. It may be that the differences dis-
cussed in this section are significant and that these extra assumptions are well
worth it, but it will require a suitable and efficient algorithm for generating
subgrid-scale clouds and an equally efficient 3D radiative transfer model. Nev-
ertheless, all that would be required would be domain-averaged and spectrally-
integrated flux profiles. We know already that random noise is a minor issue
for weather forecasting and climate modelling (cf. section 1.3.5.5 on McICA), so
reasonable numbers of photons in a 3D Monte Carlo simulation (especially for
SW transfer; see Evans and Marshak 2005) would likely suffice.

1.4.2 Unresolved cloud–radiation interactions

Even if a GCM computes domain-average fluxes based on 3D radiative transfer,
the remaining question is: do conventional GCMs, with horizontal grid-spacings
on the order of 100 km or more, resolve cloud-radiation interactions sufficiently
well? This crucial question was one of the prime factors behind the push toward
MMF-GCMs (Grabowski 2001; Randall et al. 2003). By definition this question
cannot be answered with a conventional GCM. One must be content to use either
stand-alone CSRMs or an MMF-GCM. Obviously the latter is more preferable,
but more expensive, as large-scale circulation comes into play explicitly.

Presumably, this question can be addressed to a great extent using the ICA
(e.g., Fu et al. 1995); that is, allow the CSRMs to experience local radiative
heating rates regardless of whether they are computed using 3D transfer or not.
This is what Cole et al. (2005b) did using an MMF GCM with a CSRM whose
horizontal grid-spacing was 4 km. In a series of experiments, they demonstrated
that allowing the CSRMs to respond to cloud–radiation interactions at the 4 km
scale was roughly as important as getting domain-average fluxes correct. Incor-
rect domain-average fluxes were provided by a standard two-stream model with
maximum-random overlap of homogeneous clouds. Hence, domain-average er-
rors were close to what could be expected if a common GCM radiative transfer
algorithm were to be replaced by the McICA algorithm.

Figure 1.18 shows the impact on cloud radiative effects at the TOA due to
inclusion of unresolved interactions between clouds and radiation (pers. comm.,
J. Cole 2005). Experiment 1 served as the benchmark for it utilized heating
rates at 4 km and also provided the GCM with proper (ICA) domain-average
fluxes. Experiment 4 utilized heating rates at 4 km too but incorrect domain-
averages were passed back to the GCM. Evidently this was not important for
this seasonal simulation. For Experiments 2 and 3, on the other hand, heating
rates were averaged horizontally across the domains and used by the CSRMs.
Experiment 2 passed correct domain-average fluxes back to the GCM while
Experiment 3 did not. Clearly, omission of heating rates at the CSRMs’ inner-
scale are most important for this experiment. The significance of this result
rests in the realization that getting proper domain-averages in a GCM is one
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Fig. 1.18. In the left column are plots of zonal-mean, time-averaged SW and LW
cloud radiative effects (CRE), also known as cloud radiative forcing, for December as
computed by an MMF GCM. Error bars indicate one standard deviation as realized by
a five-member ensemble of the benchmark simulation (exp 1). Plots on the right show
differences between various simulations and exp 1. See text for details. Dots indicate
when a difference is significant at the 95% confidence level. (Data courtesy of J. Cole,
2005.)

thing, but how can one expect to account for unresolved interactions between
clouds and radiation in a conventional GCM cloud parametrization where clouds
are not resolved anywhere near fundamental cloud formation-dissipation scales?
The answer is far from obvious, and we might run out of time trying solve it, for
eventually either MMF-GCMs will become commonplace or GCMs will simply
become, in essence, global CSRMs. In either case, the issue of subgrid-scale
parametrization will diminish over time. Then again, conventional GCMs will
likely continue to serve purposes, and if they continue to be used in important
roles, as they are today, progress will be required on cloud-radiation interactions
of the kind discussed here.
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1.5 Remote sensing of cloudy atmospheres
and global climate modelling

For some time now the most valuable data for assessing GCMs have come from
the Earth radiation budget satellite missions, namely Earth Radiation Bud-
get Experiment (ERBE) and Clouds and the Earth’s Radiant Energy System
(CERES). For the most part, these datasets are used to determine monthly-mean
radiation budgets and cloud radiative effects for diagnostic comparison against
corresponding values predicted by GCMs. Yet even here there are still issues
and uncertainties such as radiance-to-flux conversion and sparse sampling (e.g.,
Loeb et al. 2003). Recently these Earth radiation budget datasets have been
merged with other datasets and radiative quantities have been sorted according
to dynamical regime in an attempt to identify the conditions responsible for the
wide disagreement observed among GCMs with respect to estimates of cloud
feedback (cf. Bony et al. 2004). Additionally, attempts have been made to bring
models and observations closer together via dataset emulators such as the so-
called ISCCP simulator (Webb et al. 2001) where GCM fields, like cloud fraction
and optical depth, are converted, without actually performing radiative transfer
calculations, to resemble products inferred from satellite data. The alternative
to this approach is to apply more sophisticated radiative transfer algorithms to
GCM data, thereby producing radiance estimates that can be compared directly
to satellite measurements.

For the past 15 years or so, surface-based cloud-profiling radars (CPRs) have
provided much information about the vertical and horizontal structural charac-
teristics of clouds (e.g., Clothiaux et al. 1999). Recently, NASA’s CPR-bearing
CloudSat satellite was launched into a Sun-synchronous orbit (see Stephens et
al. 2002). CloudSat is flying in close formation with several other satellites in the
so-called A-train constellation. When data from these satellites are merged, they
have the strong potential to yield invaluable insights into the structure of clouds
at the global scale. There are, however, many issues that have to be grappled
with first.

The CPR emits pulses of electromagnetic radiation that are scattered by
particles in proportion to the sixth power of particle radius. Hence, CPRs are
quite sensitive to large cloud droplets, but have difficulty sensing small droplets.
It is immediately clear then that CPR data have to be augmented with data from
measurements that are sensitive to other moments of particle size distributions.
Hence the need to collocate CPR data with other data.

In addition, satellite-based CPRs suffer from the same sampling issues as do
aircraft and instruments fixed at the surface. Astin et al. (2001) have shown that
in broken cloud conditions, transects may have to be several hundred kilometres
long before significant reductions can be realized in the confidence intervals for
estimates of cloud fraction of the domain from which the transect was drawn.
Figure 1.19 illustrates the situation one will encounter with both CPRs fixed
on the surface (as this one is), or on aircraft or satellite. It shows the 512-km
domain of a CSRM which is taken here to be a grid-cell of a GCM. What the
GCM (or the CSRM) requires is a time series of the domain. What the CPR
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Fig. 1.19. On the right is a sampled time series of cloud masks for a 512-km domain
produced by a CSRM (Fu et al. 1995). Imagine that a surface-based CPR is fixed
at 411 km along the domain. Stringing together the 120 snapshots at 411 km leads to
the CPR-domain shown on the right. A GCM or NWP model would want what is on
the left, but the radar produced what is on the right. Clearly, in this particular case,
what the radar samples is a rather poor representation of the sequence of domains.
Satellite-based CPRs will be subject to this sampling issue as well.

(fixed here at 411 km across the domain) gives is a time series of cloud that drifts
over it. As Fig. 1.19 shows, the time series of cloud obtained at 411 km appears
to contain only a slim semblance of the domains.

Despite these complications with CPR data, NASA’s CloudSat satellite, with
its 94 GHz CPR in conjunction with the lidar on CALIPSO, and the passive
sensors on AQUA, should provide an interesting global view of the coincidental
vertical and horizontal structure of clouds. Figure 1.20 shows an example of
CloudSat data along with near-simultaneous 1-km GOES visible and thermal
imagery and NEXRAD surface precipitation radar data. Clearly CloudSat has
pinpointed precipitating clouds and appears to have even sensed the shallow
clouds immediately east of the Florida–Georgia border.

Data from CloudSat and the A-train will enable global-scale calculations
of information such as, for example, radiative sensitivities for climate model
parameters like cloud overlap decorrelation lengths which are required by the
more sophisticated GCM parametrizations. This is because cloud fractions in
distinct layers will be reported. To illustrate, if ck and cl are fractional amounts
of cloud in layers k and l as reported by CloudSat, and if Ac is total cloud
fraction, define

Ac = αk,lc
max
k,l + (1 − αk,l)crank,l , (1.70)



1 Solar radiative transfer and global climate modelling 45

Fig. 1.20. Lower plot shows an almost 4000 km long transect of CPR reflectivities mea-
sured by CloudSat. These uncalibrated data were produced only a week after Cloud-
Sat’s radar was switched on. Nevertheless, it shows an unprecedented view of clouds
that up until then would have been restricted to the passive GOES images shown in
the upper left and the NEXRAD surface precipitation radar composite shown in the
upper right. CloudSat’s colour-coded cross-section is shown on the GOES imagery and
the total trajectory is shown on the NEXRAD image.

where

cmax
k,l = max (ck, cl) , (1.71)
crank,l = ck + cl − ckcl.

The overlap parameter αk,l in (1.70) is defined as

αk,l = exp
[
−
∫ zl

zk

dz
Lcf (z)

]
, (1.72)

where Lcf is decorrelation length for overlapping fractional cloud, and z is alti-
tude (Hogan and Illingworth 2000; Bergman and Rasch 2002).
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Changes to Lcf impact SW fluxes primarily through changes to Ac and p(τ).
As shown in section 1.3.5.3, the first two moments of p(τ) are often sufficient
to capture domain-average SW fluxes. Therefore, following Barker and Räisänen
(2005), the radiative sensitivity for Lcf can be expressed as

∂F

∂Lcf ≈ ∂F

∂Ac

∂Ac
∂Lcf +

∂F

∂τ

∂τ

∂Lcf +
∂F

∂στ

∂στ
∂Lcf , (1.73)

where τ is mean cloud optical depth for the cloudy part of the domain, and
στ is corresponding relative standard deviation of τ . Each derivative in (1.73)
depends on cloud structure inside the domain as well as other parameters such
as water vapour and temperature profiles, surface conditions, and θ0. Note also
that the leading term in the three terms on the RHS of (1.73) are themselves
sensitivities that can be computed separately holding all else constant, including
Lcf (cf. Schneider 1972).

With the stochastic subcolumn generator developed by Räisänen et al. (2004)
it is straightforward to compute how cloud properties and F depend on Lcf from
which corresponding derivatives can be estimated numerically. Figure 1.21 shows
global estimates of ∂F/∂Lcf using data for a single day (January 1) generated
by an MMF GCM (Khairoutdinov and Randall 2001). The global-mean value
for net radiation (SW + LW) is 1.76 W m−2 km−1 with 1.99 W m−2 km−1 in the
SW and just −0.23 W m−2 km−1 in the LW. Perhaps as expected, the largest
sensitivities are in the tropics where minor deviations to the overlap rate of

Fig. 1.21. Radiative sensitivities ∂F/∂Lcf for cloud fraction vertical decorrelation
length Lcf computed with all else held constant. SW, LW, and NET (SW + LW)
components are shown as functions of latitude. These estimates were computed using
data from an MMF GCM simulation. It is anticipated that plots like this will be
available from data collected by CloudSat and the other A-train satellites.
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towering clouds coupled with high solar irradiance conspire to affect large TOA
albedo changes. The hope is that a corresponding analysis can be conducted
using inferences from A-train data.

1.6 Concluding remarks

This central thesis of this volume is scattering of radiation (light). Given limi-
tations on length, this chapter focused on treatment of solar radiative transfer
in global climate models (GCMs). The intention was to give readers, especially
upper-level undergraduates and entry-level graduates, a taste of some of the light
scattering-related issues facing computation of radiative fluxes in global mod-
els. Emphasis was on some of the macroscopic issues regarding solar radiative
transfer for cloudy atmospheres.

After discussing the central role played by radiation in global climatology
and analyses of climate, both real and simulated, the mainstay of GCM radia-
tive transfer solvers was discussed; two-stream approximations. Limitations of
two-streams were mentioned and some techniques were reviewed for extending
the application of basic two-streams to address fluctuations in cloud density
that are unresolved by conventional GCMs. The obvious limitation is the fact
that clouds are never homogeneous in the horizontal or the vertical, and so the
basic assumptions upon which two-streams are built are violated repeatedly in
GCMs. Regarding the macroscopic aspects of clouds, this translates into de-
scriptions of horizontal fluctuations of cloud properties across a GCM layer as
well as how these fluctuations stack up in the vertical. This discussion finished
with the Monte Carlo Independent Column Approximation (McICA) which de-
couples description of unresolved fluctuations in the medium from the radiative
transfer solver and so eliminates biases that analytic two-stream extensions are
bound to possess. Hence, McICA is able, to the same extent as the full ICA, to
address all descriptions of horizontal fluctuations and vertical overlap patterns.
The problem is that conventional GCM cloud parametrizations are still in their
infancy when it comes to describing the nature of unresolved cloud structure,
and so at the moment, McICA within a GCM can be provided only with limited
information. The hope is that a synthesis of data from a host of sensors will
help guide production and assessment of these much needed aspects of cloud
parametrization. Data from the active sensors in the A-train of satellites (see
Stephens et al. 2002) as well as from the Atmospheric Radiation Measurement
(ARM) program (Stokes and Schwartz 1994) and the BALTEX Bridge Cloud
(BBC) campaign, should help immensely, but it is still too early to tell as exten-
sive numerical end-to-end simulations of what we know these instruments are
sensing have yet to take place. Having said this, the unbiased nature of McICA
is, however, only as good as one’s willingness to neglect 3D radiative transfer
effects on fluxes.

On this last point there are two levels of concern. First, are domain-average
fluxes provided by the ICA sufficient for climate simulation? Global estimates
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of differences between the ICA and 3D radiative transfer were provided in sec-
tion 1.4.1 (see Cole et al. 2005a). In the framework of conventional GCMs, with
only limited amounts of information regarding unresolved cloud structure, the
answer is probably: yes, the ICA is sufficient. This is because to go beyond
the ICA requires explicit cloud fields as opposed to descriptions of one-point
probability distributions for horizontal variations and statistical descriptions for
vertical overlap. GCMs are barely in a position to provide these descriptions let
alone make the leap to conjuring up full 3D, even 2D, unresolved cloud fields.
Again, data like those from the satellite A-train should help address this concern.
Nevertheless, it might be worthwhile performing some GCM sensitivity experi-
ments that employ a simple stochastic cloud field generator [like that developed
by Räisänen et al. (2004) but including horizontal structure] to see if the fairly
subtle, yet systematic, effects of 3D transfer impact global climate simulations.

The second question regarding 3D effects is: are interactions between cloud
and radiation at scales that are unresolved by conventional GCMs important for
climate simulation? As mentioned in section 1.4.2, this effect can be addressed
partially using the ICA method. This is how Cole et al. (2005b) investigated
this issue using an MMF GCM in which the cloud parametrization consisted
of a 2D cloud system-resolving model (CSRM). In essence, the CSRM provides
explicit cloud fields (i.e., no need to invoke parametrizations to describe unre-
solved fluctuations) so the ICA can be applied directly to the CSRM fields and
the CSRMs can either evolve based on local radiative heating rates or domain-
averaged heating rates. Likewise, either ICA domain-average fluxes or incorrect
values based on a conventional GCM radiation solver (e.g., one that makes sim-
ple assumptions about clouds at scales unresolved by the host GCM) can be
passed back to the host GCM. There is nothing, except computational limita-
tions perhaps, stopping one from repeating Cole et al.’s experiments using 3D
radiative transfer models. The disconcerting conclusion they came to was that,
for their experiments in particular, cloud-radiation interactions at scales unre-
solved by the host GCM appear to be approximately as important as getting
the domain-average flux profiles correct (i.e., via the ICA or McICA). This is
disconcerting because it is very difficult to see how these interactions can be
parametrized in a conventional GCM to an extent that would be considered to
be even remotely satisfying.

There are many aspects to GCM radiative transfer calculations that were
not addressed explicitly in this chapter. Some of them have been discussed else-
where in this volume. For example, scattering by ice crystals is dictated by the
size, geometric structure, and orientation of crystals, but as yet there is little
consensus on any of these properties. As such, representation of scattering by ice
crystals in GCM radiation codes is still at the stage of fiddling with gross prop-
erties, like asymmetry parameter, in order to satisfy model simulation of global
radiation budgets. On the other hand, treatment of absorption of radiation by
atmospheric constituents has been addressed only in passing throughout this
volume. Likewise, relatively little has been said about measurement of Earth’s
radiation budget by satellites as a means of assessing GCM simulations, though
an entire chapter could easily be devoted to this subject.
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A Appendix: Two-stream approximations

The purpose of this appendix is to clarify two-stream approximations. Begin by
restating the azimuthally-averaged 1D equation of transfer [see (1.19)] as

µ
dI(τ, µ)

dτ
= −I(τ, µ) +

ω0

2

∫ 1

−1
p(µ;µ′)I(τ, µ′) dµ′

+
F0

4
ω0p(µ;µ0) e−τ/µ0 ,

(A1.1)

where I is radiance, F0 is incoming solar at the TOA, µ is cosine of zenith angle,
µ0 is cosine of solar zenith angle, τ is optical thickness, and ω0 is single scattering
albedo. Define

F±(τ) =
∫ 1

0
µI(τ,±µ) dµ (A1.2)

as upwelling and downwelling irradiances. Going a step further, let I(τ,±µ) be
defined as

I(τ,±µ) =
∞∑
m=0

im (τ)Pm(µ) (A1.3)

where Pm(µ) is the mth-order Legendre polynomial. Hence, (A1.2) becomes

F±(τ) =
∫ 1

0
µ

∞∑
m=0

im (τ)Pm(µ) dµ. (A1.4)

By applying the hemispheric operators
∫ 1
0 dµ and

∫ 0
−1 dµ to (A1.1), using (A1.4),

and dropping explicit notation of dependence on τ yields the coupled equations:



dF+

dτ
=

∫ 1

0

∞∑
m=0

imPm(µ) dµ− ω0

2

∫ 1

0

∫ 1

−1
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

−F0

4
ω0 e−τ/µ0

∫ 1

0
p(µ;µ0) dµ

dF−

dτ
=

∫ 0

−1

∞∑
m=0

imPm(µ) dµ− ω0

2

∫ 0

−1

∫ 1

−1
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

+
F0

4
ω0γ4 e−τ/µ0

∫ 0

−1
p(µ;µ0) dµ.

(A1.5)
Decomposing the zenith-to-nadir integrals into integrals over the up and down
hemispheres leads to
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dF+

dτ
=
∫ 1

0

∞∑
m=0

imPm(µ) dµ+
ω0

2

∫ 1

0

∫ 1

0
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

︸ ︷︷ ︸
diffuse-beam forescatter

−ω0

2

∫ 1

0

∫ 0

−1
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

︸ ︷︷ ︸
diffuse-beam backscatter

−F0

4
ω0 e−τ/µ0

∫ 1

0
p(µ;µ0) dµ

︸ ︷︷ ︸
direct-beam backscatter

.

dF−

dτ
=
∫ 0

−1

∞∑
m=0

imPm(µ) dµ+
ω0

2

∫ 0

−1

∫ 1

0
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

︸ ︷︷ ︸
diffuse-beam backscatter

+
ω0

2

∫ 0

−1

∫ 0

−1
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ

︸ ︷︷ ︸
diffuse-beam forescatter

+
F0

4
ω0 e−τ/µ0

∫ 0

−1
p(µ;µ0) dµ

︸ ︷︷ ︸
direct-beam forescatter

.

(A1.6)
Equation (A1.6) can be simplified to




dF+(τ)
dτ

= γ1F
+(τ) − γ2F

−(τ) − F0

4
ω0γ3 e−τ/µ0

dF−(τ)
dτ

= γ2F
+(τ) − γ1F

−(τ) +
F0

4
ω0γ4 e−τ/µ0

(A1.7)

by approximating the integrals. As such, (A1.7) is in essence the general two-
stream approximation where γ1, . . . , γ4 depend on assumptions made about I
and p, as well as on µ0 and optical properties. General solutions to (A1.7) are
given by (1.23) through (1.28) in the mainbody of this chapter.

Some two-stream approximations (e.g., Coakley and Chýlek 1975) work di-
rectly with the backscattered fractions in (A1.6). For diffuse-beam, the backscat-
tered fraction is

β =
1
2

∫ 1

0

∫ 1

0
p(µ;µ′)

∞∑
m=0

imPm(µ) dµ′ dµ . (A1.8)

Expanding p(µ;µ′) using the addition theorem for spherical harmonics and

Pn(−µ) = (−1)nPn(µ) , (A1.9)

(A1.8) becomes

β =
1
2

∞∑
n=0

(−1)nωn
∫ 1

0
Pn(µ) dµ

{ ∞∑
m=0

im

∫ 1

0
Pn(µ′)Pm(µ′) dµ′

}
, (A1.10)

where ωn are phase function expansion coefficients [note that ω0 = 1 as single
scattering albedo appears explicitly in (A1.1)]. For isotropic irradiance, (A1.10)
reduces to
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β =
1
2

∞∑
n=0

(−1)nωn
∫ 1

0

∫ 1

0
Pn(µ)Pn(µ′) dµdµ′ (A1.11)

which can be shown to equal (Wiscombe and Grams 1976)

βiso =
1
2

− 1
8π

∞∑
n=0

[
Γ
(
n+ 1

2

)
Γ (n+ 2)

]2

ω2n+1 . (A1.12)

For non-isotropic irradiance it can be shown (Barker 1994) that

β = i0βiso +
1

4
√
π

∞∑
m=0

(−1)m
[

Γ
(
m+ 1

2

)
Γ (m+ 2)

](
1 − ω2m+1

4m+ 3

)
i2m+1. (A1.13)

Correspondingly, via a similar development (Wiscombe and Grams 1976),
the backscatter function for direct-beam irradiance can be expressed as

β (µ0) =
1
2

− 1
4
√
π

∞∑
n=0

(−1)n
[

Γ
(
n+ 1

2

)
Γ (n+ 2)

]
ω2n+1P2n+1(µ0). (A1.14)

As another example, the Eddington approximation (Shettle and Weinman
1970) uses the first two Legendre terms and approximates I and p as

I(µ) = i0 + i1µ (A1.15)

and
p (µ0, µ

′) = 1 + 3gµ0µ
′ , (A1.16)

where g is the asymmetry parameter. This is often paired with the delta ap-
proximation (see Joseph et al. 1976) where the phase function is assumed to
be

p (µ0, µ
′) = 2fδ (µ0 − µ′) + (1 − f) (1 + 3gµ0µ

′) , (A1.17)

where δ is Dirac’s distribution, and it is often adequate to set f = g2. With these
approximations, standard solutions to the two-stream [(1.23) through (1.28)] can
be used with the basic input transformed as

τ ′ =
(
1 − ω0g

2) τ ,
ω′

0 =
1 − g2

1 − ω0g2ω0 ,

g′ =
g

1 + g
.

(A1.18)

Table 1.1 gives parameter expressions for various common two-streams.
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Table 1.1. References and parameter values for four common two-stream approxima-
tions. Note that by conservation of energy, γ3 = 1 − γ4

Method Reference γ1 γ2 γ3

Eddington Shettle + Weinman
(1970)

7 − ω0(4 + 3g)
4

−1 − ω0(4 − 3g)
4

2 − 3gµ0

4

delta-Eddington Joseph et al.
(1976)

7 − ω′
0(4 + 3g′)

4
−1 − ω′

0(4 − 3g′)
4

2 − 3g′µ0

4

Coakley + Chýlek Coakley + Chýlek
(1975)

2
[
1 − ω0(1 − β)

]
2ω0β β (µ0)

PIFM Zdunkowski et al.
(1980)

8 − ω0(5 + 3g)
4

3
4
ω′

0(1 − g′)
2 − 3g′µ0

4
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