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2.1 Introduction

Imagine an evening sky just before sunset as one gazes into the dark blue sky
whilst lying in a country field surrounded by bird song, there often appears high
in the sky wispy thin fibrous clouds. These innocuous-looking clouds are called
cirrus. A non-specialist might be forgiven for thinking that such insubstantial-
looking clouds are unimportant to the climate system. In fact, nothing could be
further from the truth, as this chapter will demonstrate.

Cirrus is high-level cloud and appears at altitudes usually greater than about
6 km occurring at all latitudes and during all seasons (Wylie et al., 1994). Cir-
rus can cover substantial parts of the Earth’s surface; recent estimates suggest
the coverage to be 20–30% with 60–70% coverage in the tropics (Liou, 1986;
Hartmann et al., 1992; Wylie et al., 1994). With such a spatial and temporal
coverage cirrus has an important impact on the Earth atmosphere radiative bal-
ance (Stephens and Webster, 1981; Mitchell et al., 1989; Liou and Takano, 1994;
Lohmann and Roeckner, 1995; Donner et al., 1997; Kristjánsson et al., 2000;
Hong et al., 2006; Edwards et al., 2007). This impact can manifest itself in sev-
eral ways. Cirrus exists at low temperatures and is optically thin high-level cloud,
which generally transmit solar radiation and absorb long-wave radiation. Since
cirrus is cold little infrared radiation is emitted back to space, thereby warming
the Earth’s surface, this is a positive feedback. However, ice cloud associated
with deep convection or fronts can reflect significant amounts of solar radiation
back to space, thereby tending to cool the Earth’s surface, this is a negative
feedback. In the paper by Zhang et al. (1999) it is shown that the net radiative
forcing of cirrus can vary for a fixed optical depth (i.e., the cloud extinction mul-
tiplied by its vertical geometric depth) between net warming and net cooling by
changing the size of ice crystals from large to small, respectively. The overall sign
of the net cirrus radiative forcing is crucial to determine if climate models are
to realistically simulate future climate change (IPCC, 2001). In order to achieve
this it is necessary to understand the basic microphysical and macrophysical
composition of cirrus in terms of ice crystal size, ice crystal shape and Ice Water
Content (IWC). The IWC is an important macrophysical variable in radiative
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transfer (see, for example, Foot, 1988; Francis et al., 1994; Mitchell, 2002) and
it is defined as the mass of ice present per unit volume and has units of gm−3.
For a complete review of cirrus microphysical and macrophysical properties see
Lynch et al. (2002).

Since cirrus occurs at high altitudes these clouds predominantly consist of
nonspherical ice crystals. The sizes and shapes of these nonspherical ice crystals
can vary significantly. In terms of size cirrus ice crystals can vary between less
than 50 µm to several thousand micrometres and the shapes can take on many
different geometric forms (Garrett et al., 2005; Connolly et al., 2004; Gallagher
et al., 2004; Heymsfield and Miloshevich, 2003; Korolev et al., 2000; McFarquhar
and Heymsfield, 1996). Typically the shapes of nonspherical ice crystals that ap-
pear in cirrus can range from simple hexagonal ice columns, hexagonal ice plates,
single bullets, bullet-rosettes having varying numbers of branches, to complex
aggregates composed of roughened and/or distorted hexagonal columns. More
recent observations demonstrate that chains of aggregates consisting of plates
can also exist in tropical anvil cloud (Connolly et al., 2004) and Lawson et
al. (2003) also found evidence of aggregate chains in continental anvils. Interest-
ingly, no evidence of aggregate chains was found in anvils generated by maritime
convection as reported by Lawson et al. (2003). It is remarked by Connolly et
al. (2004) that the aggregate chains observed by them are strikingly similar to
aggregate chains found in the laboratory under the influence of electric fields
(Wahab, 1974; Saunders and Wahab, 1975).

Typical examples of ice crystal ensembles of varying shapes and sizes that
might exist in cirrus are shown as a function of height in Fig. 2.1 and Fig. 2.2 (the
images were provided by Andrew Heymsfield). The images shown in both figures
were obtained using the Cloud Particle Imager (CPI) instrument and the CPI is
described in the paper by Lawson et al. (2001). The crystal sizes shown in Fig. 2.1
are greater than 100 µm (Heymsfield and Miloshevich, 2003) and it is evident
from the figure that there is little evidence of the more pristine shapes such as
hexagonal columns or plates, the most common shapes appear to be rosettes
and chains of rosettes and the rosettes appear spatial rather than compact.
Although in Fig. 2.1 there does appear to be the odd hexagonal column, there
is evidence of air inclusions, both in the single columns and in some branches of
the rosettes. The shapes shown in Fig. 2.2 are dominated by bullet-rosettes or
aggregates of rosettes for crystal sizes larger than 100 µm with again very little
evidence of pristine ice crystal shapes such as hexagonal columns or hexagonal
plates. The shape of ice crystals less than 100 µm in size is currently unknown
due to the limiting resolving power of the CPI. As shown in Fig. 2.2 these
shapes of less than 100 µm in size can appear as quasi-spherical or spheroidal
but nonetheless may still be irregular. It is very important to characterize the size
and shapes of ice crystals smaller than 100 µm as these may exist in significant
concentrations and can have a large impact on the radiative properties of cirrus
(Ivanova et al., 2001; Yang et al., 2001). Since ice crystals less than 100 µm in
size appear ‘quasi-spherical’ it is often the case that such crystals are modelled
as spheres as suggested by McFarquhar et al. (1999) or Chebyshev polynomials
(McFarquhar et al., 2002), spheroids were suggested by Asano and Sato (1980).
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Fig. 2.1. A set of ice crystal images shown as a function of height. The images were
obtained using the CPI instrument (courtesy A. Heymsfield).

Other possibilities are the Gaussian random sphere as suggested by Nousiainen
and McFarquhar (2004) or droxtals as proposed by Yang et al. (2003). Although
it is not currently possible to say which of these representations truly represents
ice crystals less than 100 µm in size, it is, however, likely that small ice crystals
are faceted as commented by Heymsfield and Platt (1984). In order to distinguish
the shapes of small ice crystals an enhanced CPI is required or a new approach. A
new approach could be based on two-dimensional scattering patterns as proposed
by Clarke et al. (2006). In the paper by Clarke et al. (2006) it is shown that
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Fig. 2.2. Same as Fig. 2.1 but ice crystal size is shown on the top along the x-axis
(courtesy A. Heymsfield).

the 2D scattering patterns between a small hexagonal column, hexagonal plate,
rosette and droxtal are quite different and these differences could be used to
potentially classify ice crystal shapes less than 100 µm in size.

From the currently available evidence it can be said that the most common
type of ice crystal that inhabits synoptically generated cirrus is bullet-rosettes
whilst anvil cirrus is chiefly populated by non-symmetric irregulars. This is
further supported by observations made by Korolev et al. (2000) in the mid-
latitudes and McFarquhar and Heymsfield (1996) whom made measurements of
ice crystal size and shape in deep tropical convection.

With such a variability of ice crystal size and shape, adequately modelling
and computing cirrus scattering and absorption properties is problematic; but
this problem must be addressed if the net radiative impact of cirrus is to be
quantified. The rest of this chapter will be devoted to reviewing the current
modelling approaches to representing cirrus ice crystal shapes and the current
methodologies adopted in computing their scattering and absorption properties.
The chapter ends by reviewing how such ice crystal scattering and absorption
properties can be tested by remotely sensing, cirrus using both airborne and
space-based instruments. The chapter attempts to bring together the impor-
tance of cirrus microphysical and macrophysical properties to the light scatter-
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ing problem and how these two equally important components can be combined
to improve understanding of the net radiative impact of cirrus.

2.2 Cirrus ice crystal models

As can be seen from Fig. 2.1 and Fig. 2.2 the shapes of cirrus ice crystals are
complex and so, in order to model their scattering and absorption properties,
idealized geometric shapes are sought. The typical range of ice crystal models
currently used is shown in Fig. 2.3. The modelling of shapes which have symmet-
ric properties such as the hexagonal column, hexagonal plate and bullet-rosette
is straightforward since these have a well defined three-dimensional geometry as
shown in Figs. 2.3 (b), 2.3 (c), and 2.3 (d), respectively. However, as the com-
plexity of ice crystal shape increases then there are a number of possibilities as

                                 

                                             

(a)                         (b)                             (c)      

(d)                         (e)        

                 

 (f)

(g)

Fig. 2.3. Geometrical realizations of ice crystal shapes showing (a) randomized poly-
crystal, (b) pristine hexagonal ice column, (c) hexagonal ice plate, (d) six-branched
bullet-rosette, (e) randomized hexagonal ice aggregate, (f) inhomogeneous hexagonal
monocrystal, (g) chain-like aggregate.
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to how to represent such a complexity. In Fig. 2.3 four such realizations of com-
plex ice crystals are illustrated. In Fig.2.3 (a) the ‘polycrystal’ due to Macke et
al. (1996) is a randomization of the second-generation triadic Koch fractal, the
basic element of which is the tetrahedron and the polycrystal remains invariant
with respect to size. The polycrystal is supposed to represent in one ice crystal
model the variability of shape observed in Fig. 2.1 and Fig. 2.2. Figure 2.3 (e)
illustrates the hexagonal ice aggregate introduced by Yang and Liou (1998); the
aggregate is composed of eight hexagonal elements, the surfaces of which can
be roughened. The hexagonal ice aggregate also remains invariant with respect
to size. Figure 2.3 (f) shows the Inhomogeneous Hexagonal Monocrystal (IHM),
which was introduced by Labonnote et al. (2001) in order to retain the simplic-
ity of the hexagonal column but introducing randomization of the ice crystal
by adding inclusions such as air bubbles and aerosol. Figure 2.3 (g) shows the
chain-like aggregate introduced by Baran and Labonnote (2006) based on the
Yang and Liou (1998) aggregate but with two of the original hexagonal elements
elongated and re-transformed into a chain. This model is supposed to capture
the more spatial and chain-like properties shown in Fig. 2.1 and Fig. 2.2.

The common feature of the polycrystal and hexagonal ice aggregate is that
their aspect ratio remains invariant with respect to size. Rather than arbitrarily
constructing some ice crystal model it would be desirable to predict resulting
crystal shapes from an initial monomer crystal, which is allowed to aggregate.
This approach has been applied by Westbrook et al. (2004), where a distribution
of monomer ice crystals such as single six-branched rosettes are allowed to collide
until a distribution of aggregates is produced. An example of such a fully grown
ice aggregate is shown in Fig. 2.4. As can be seen from the figure the resulting
aggregate has an aspect ratio greater than unity and is also spatial. These are
the two properties which are common to Fig. 2.1 and Fig. 2.2. It has also been
demonstrated by Westbrook et al. (2004) that the resulting aspect ratio of the
ice aggregate asymptotes to 1.54 and is independent of assumptions regarding
the initial monomer.

The geometric ice crystal representations illustrated by Fig. 2.3 are single
model realizations but, as shown in Fig. 2.1 and Fig. 2.2, in reality ensembles
of different shapes occur which Westbrook et al. (2004) attempt to emulate. It
is becoming more common to construct ensembles of geometric shapes rather
than assume one single geometric shape over the entire particle size distribu-
tion function. Such an approach has been utilized by Rolland et al. (2000) and
McFarquhar et al. (1999, 2002). More recently, Baum et al. (2005) have demon-
strated that a mixture of shapes can better represent the bulk IWC than single
shape models such as the hexagonal ice aggregate. The mixture of ice crystal
shapes proposed by Baum et al. (2005) comprise droxtals, hexagonal plates, solid
hexagonal columns, hollow columns, bullet-rosettes and aggregates.

In this chapter another approach to representing the distribution of cirrus
ice crystal size and shape by some distribution of idealized shapes is presented
and has been described in Baran (2006). As Fig. 2.1 and Fig. 2.2 illustrate, ice
crystal shape appears to become more progressively spatial and complex lower
in the cloud. In order to mimic this change in shape as a function of crystal
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Fig. 2.4. A realization of an ice aggregate ice crystal grown from an initial six-branched
hexagonal rosette. The aspect ratio of the fully grown aggregate is 1.54 (reproduced,
with permission, from Baran, 2003a).

maximum dimension (literally the largest extent of the crystal) an ensemble
model, as illustrated in Fig. 2.5, has been constructed. The smallest ice crystals
consist of solid hexagonal ice columns assuming an aspect ratio of unity (i.e.,
ratio between column length and diameter). As the maximum dimension of ice
crystals increase, the shapes become progressively more complex and spatial by
arbitrarily attaching other column elements. One important aspect of the en-
semble model shown in Fig. 2.5 is that the overall aspect ratio does not remain
invariant with respect to the ice crystal maximum dimension. The various shapes
in Fig. 2.5 are assumed to be distributed equally throughout the particle size
distribution function. In the paper by Baum et al. (2005) the particle size distri-
bution functions are obtained from many different field campaigns with no clear
relationship between IWC and the cloud temperature (Tc). It would be desirable
to relate the particle size distribution function (PSD) to macroscopic variables
such as IWC and Tc such that the PSD can be generated from any given val-
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           One element                                                   Three element             

                         

        Five element                                           Eight element (after Yang and Liou, 1998) 

                                        

     Eight element chain                                              Ten element chain            

Fig. 2.5. The ensemble model. The one element model represents the smallest ice
crystals taken to be a hexagonal ice column assuming an aspect ratio of unity, whilst
the ten element model represents the largest ice crystals. All elements are assumed to
be equally distributed in the particle size distribution function.

ues of these two variables. Such a parametrization has been realised by Field et
al. (2005) and the parametrization should be of value in climate and numeri-
cal weather prediction models where IWC and Tc are important variables. The
parametrization due to Field et al. (2005) is based on many in situ measured
PSD obtained in mid-latitude stratiform ice cloud at temperatures between 0◦C
and −60◦C. The paper demonstrates importantly that the many PSD may be
represented by a single underlying PSD from which the initial PSD can be re-
trieved from knowledge of two moments. Field et al. (2005) make use of the IWC
(second moment of the PSD) and by using Tc they obtain power laws to link
IWC to any moment. However, the paper by Field et al. (2005) does not quan-



2 On the remote sensing and radiative properties of cirrus 67

Fig. 2.6. The predicted IWC assuming the ensemble model (plus signs) and the hexag-
onal ice aggregate (triangles) plotted as a function of true IWC for Tc = −30◦C. The
full line shows the one-to-one relationship.

tify the contribution of ice crystals smaller than 100 µm to the PSD; however,
the parametrization is independent of ice crystal shape assumptions. Therefore,
from given values of IWC and Tc the PSD can be generated. From the generated
PSD using the parametrization due to Field et al. (2005) the IWC can then be
predicted from the ensemble model shown in Fig. 2.5. The predicted IWC from
the ensemble model can then be compared with the true IWC used to generate
the PSD. The results of comparing the predicted IWC from the ensemble model
with the true IWC are shown in Fig. 2.6 for Tc = −30◦C, also shown in the
figure are the results for the hexagonal ice aggregate. The figure shows that the
hexagonal ice aggregate is not a good predictor of the true IWC, which is con-
sistent with Baum et al. (2005). In contrast, the ensemble model prediction of
the true IWC is good. In general the ensemble model prediction of the true IWC
is generally well within a factor 2. Results of comparison assuming Tc = −60◦C
are shown in Fig. 2.7. In this case the hexagonal ice aggregate under-predicts
the true IWC by significant factors whilst the ensemble model under predicts
by about a factor 2 though this improves with increasing true IWC. Typical
ranges of measured IWC at Tc = −30◦C and −60◦C are 0.01–1.0 gm−3 and
0.001–0.1 gm−3, respectively (see Fig. 2.2 in Field et al., 2005, top scale). Con-
sidering the measured range of IWC, the ensemble model prediction of IWC at
Tc = −30◦C is in excellent agreement with the true IWC and at Tc = −60◦C the
agreement is satisfactory. It should be remarked that the measurements made
by Field et al. (2005) at temperatures of −60◦C were at the limits of instrumen-
tal capability and the contribution of ice crystals less than 100 µm in size was



68 Anthony J. Baran

Fig. 2.7. Same as Fig. 2.6 but for Tc = −60◦C.

ignored. Figure 2.6 and Fig. 2.7 demonstrate that it is possible to construct an
ensemble ice crystal model which from the PSD predicts reasonable values for
the IWC. Linking the ice crystal model to important variables such as IWC and
Tc, via the PSD, is important if cirrus parametrization in climate models is to
be further improved. Given an ensemble ice crystal model such as that shown
in Fig. 2.5 the question of computing its scattering and absorption properties
arise. The next section reviews computational methods currently used to obtain
scattering and absorption characteristics of nonspherical ice crystals.

2.3 Computational methods applied
to nonspherical ice crystals

As can be seen from Fig. 2.1 and Fig. 2.2 the range of ice crystal size and shape
is significant and computation of their single scattering properties is demanding.
The problem is to be able to apply some computational method to a tractable
geometry resulting in stable and convergent solutions which represent the scat-
tering and absorption properties of real ice crystals. The basic description of
incident light being scattered from a collection of randomly oriented ice crystals
suspended in the Earth’s atmosphere is briefly outlined below.

Assuming an incident unpolarized beam of light upon an ensemble of ran-
domly oriented ice crystals which each posses a plane of symmetry, the Stokes
vector of the incident light (Iinc, Qinc, Uinc, Vinc) is linearly related to the Stokes
vector of the scattered light (Isca, Qsca, Usca, Vsca) by a 4 × 4 scattering matrix,
for each scattering angle, θ, given by (van de Hulst, 1957):
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where in Eq. (2.1) Csca is the ice crystal scattering cross-section (extinction effi-
ciency multiplied by the ice crystal geometric cross-section) and r is the distance
of the scattering particle from some observer. The 4×4 matrix shown in Eq. (2.1)
is called the phase matrix. Due to the assumed symmetry properties of the sys-
tem then, out of the eight elements shown in Eq. (2.1) only six are independent
due to P21 = P12 and P43 = −P34 (see van de Hulst, 1957). Since incident unpo-
larized light has been assumed (which is the case for incident sunlight) the first
element in Eq. (2.1) is proportional to the scattered light and P11 is called the
scattering phase function. It is normalized as follows:

1
2

∫ 1

−1
P11(θ) sin θ dθ = 1 (2.2)

Moreover, −P12/P11 describes the degree of linear polarization (DLP). The P11
element and DLP are useful quantities in the remote sensing of cirrus since P11
and DLP depend on the shape and size of ice crystals.

In this chapter the orientation of ice crystals is assumed to be random. This
assumption leads to the following question. What is the current evidence that
atmospheric ice crystals are randomly oriented in space? In the paper by Chepfer
et al. (1999) it was reported that at least 40% of their space-based measurements
of cirrus suggested that the ice crystals were horizontally oriented. However, in
more recent papers by Bréon and Dubrulle (2004) and Noel and Chepfer (2004)
they conclude that the actual fraction of horizontally oriented ice crystals is
more likely to be about 10−2. Therefore, given this information the assumption
of randomly oriented ice crystals can be generally applied, at least for solar and
infrared measurements of cirrus.

In terms of radiative transfer the single scattering properties that are re-
quired to compute the radiative properties of cirrus are the volume extinction
coefficient, Kext, volume scattering coefficient, Ksca, the single scattering albedo
(the ratio of the scattered energy to the total amount of attenuated energy), ω0,
and the asymmetry parameter, g. The volume extinction/scattering coefficient
is defined as

Kext,sca =
∫

Qext,sca(q) 〈S(q)〉 n(q) dq (2.3)

where Qext,sca(q) is the extinction/scattering efficiency factor (defined as the
ratio between the scattering/extinction cross-section and geometric area of the
ice crystal), 〈S(q)〉 is the orientation averaged geometric area and n(q) is the
PSD. Each term in Eq. (2.3) is expressed as a function of the vector parameter,
q, which characterizes the shape and size of ice crystal. The single scattering
albedo is given by

ω0 = Ksca/Kext (2.4)
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and the asymmetry parameter is a parametrization of the P11 element into a
single number which describes how much incident radiation is scattered into the
backward and forward hemispheres and can take on values between −1 and 1
depending on the size, shape, and refractive index of the scatterer. The formal
definition of g is the average cosine of the scattering angle:

g = 〈cos θ〉 =
∫ 1

−1
d(cos θ)P11(cos θ) cos θ . (2.5)

In order to compute or measure g from Eq. (2.5) the angular dependence of
the P11 element must be known. The asymmetry parameter is a very important
quantity in climate models as choice of g determines the radiative impact of
cirrus (Stephens et al., 1990). The reason why choice of g is so important is
because the backward reflection of incident sunlight assuming conservative scat-
tering depends on 1 − g, so for small and large values of g reflection of sunlight
back to space increases and decreases, respectively. It is, therefore, necessary to
constrain the value of g so that the most representative value can be applied to
climate models. Calculations of g for the various ice crystal models described
in section 2.2 range from 0.74 for the polycrystal (Macke et al., 1996), 0.77 for
the hexagonal ice aggregate (Yang and Liou, 1998) and 0.75–0.84 for the solid
hexagonal column (Takano and Liou, 1989a). It is possible to ‘measure’ g us-
ing the Cloud Integrating Nephelometer (CIN) described in Gerber et al. (2000).
The P11 element measured by CIN is truncated at a scattering angle of 10◦, thus
the full phase function is not utilized in the ‘measurement’ of g. The CIN instru-
ment has measured g in an Arctic ice cloud consisting of bullet-rosettes at visible
wavelengths, suggesting values around 0.74. In tropical cirrus CIN measured g
values of 0.75 ± 0.01 as reported in Garrett et al. (2003). In tropical anvil cloud
CIN generally measured g values ranging between 0.70 and 0.74 as discussed in
Garrett et al. (2005). Baran et al. (2005) estimated the asymmetry parameter
using ground-based Polar Nephelometer measurements of Antarctic ice crystals
as they fell into a light scattering chamber, and the irregular ice crystal ensemble
was found to have a g value of 0.74 ± 0.02. In the paper by Field et al. (2003)
the asymmetry parameter in mid-latitude cirrus was estimated to be 0.76 using
an airborne light scattering probe by fitting a phase function to the angular
intensity measurements that depends on g only. Currently, there appears to be
some convergence of measured g values of around 0.74 ± 0.02 for atmospheric
ice crystals according to the literature. However, further measurements of g are
required both in the laboratory of actual ice crystals and in the field using new
instrumentation that captures a near-complete phase function before one can
say that true convergence has been achieved.

The computation of Eqs (2.1)–(2.5) over the entire spectrum of ice crystal
size is not an easy task since typical cirrus ice crystal size parameters (product
of particle characteristic size and wavenumber, where the wavenumber is 2π/λ
and λ is the incident wavelength) can range between less than unity to thou-
sands. Currently, there is no one single computational method that is capable of
covering the whole cirrus size parameter space. As a result approximate methods
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are still required to bridge the gap between small size parameters, intermediate
size parameters and large size parameters.

Electromagnetic methods are usually applied to ice crystals covering small
size parameter space of less than about 40. The Finite-Difference-Time-Domain
(FDTD) method has been applied to compute the single scattering properties
of the hexagonal ice aggregate up to a size parameter of about 20 (Yang and
Liou, 1995; Yang et al., 2000, 2004) and Havemann et al. (2003) have applied
the T-matrix method to the solid finite hexagonal ice column at size parameters
of up to about 40. Sun et al. (1999) have applied the FDTD method to the
ice sphere at size parameters of up to 40. The accuracy of the FDTD method
has been tested by Baran et al. (2001a) against the T-matrix method for a fi-
nite randomly oriented solid hexagonal ice column and it was found that the
relative errors for Cext, ω0, and g were less than 1%. The FDTD method has
also been applied to more general shapes such as the bullet-rosette (Baum et
al., 2000), Gaussian random particles (Sun et al., 2003) and droxtals (Yang et
al., 2003). The T-matrix method has now been applied to more general poly-
hedral prisms by Kahnert et al. (2001). Other electromagnetic methods that
have been applied to ice crystals include the Separation of Variables Method
(SVM) developed by Rother et al. (2001) to compute the scattering matrix el-
ements of the infinite hexagonal ice column. Kokhanovsky (2005a,b, 2006) has
used the discrete dipole approximation (DDA) to compute the scattering prop-
erties of hexagonal and cubic ice crystals. By combining desirable properties of
the T-matrix and DDA, Mackowski (2002) has developed the Discrete Dipole
Method of Moments (DDMM) approach, which shows promise for computing
the single scattering properties of ice crystals for size parameters of about 40.
The boundary-element method has been successfully applied by Mano (2000) to
compute the single scattering properties of oriented finite hexagonal ice columns
for size parameters of 50. An extensive review of electromagnetic methods can
be found in Mishchenko et al. (2002) and Kahnert (2003).

For the intermediate size parameter range (∼20 to 60), there are a num-
ber of physical optics based approaches which fill the gap between ‘exact’ and
approximate methods. In the paper by Yang and Liou (1996) it is shown that
the method of Improved Geometric Optics (IGO) applied to the geometry of
the solid hexagonal ice column converges to FDTD solutions for the extinction
cross-section and single scattering albedo at size parameters around ∼20. This
holds for the P11 element in Eq. (2.1) as well (Yang and Liou, 1995). The phys-
ical optics approach of Muinonen (1989) could also be applied to ice crystals.
More recently, a computationally fast edge diffraction method has been proposed
by Hesse and Ulanowski (2003) and further developed in Clarke et al. (2006).
This new approach has been specifically developed for ice crystals with facets,
though in principle it could be applied to any arbitrary dielectric faceted object.
Diffraction on facets has been compared with SVM in computing the P11 ele-
ment and the asymmetry parameter, assuming oriented hexagonal columns of
size parameters 50 and 100 (Hesse et al., 2003). Borovoi and Grishin (2003) have
developed a proper ray-tracing method for computation of the Jones scattering
matrix inclusive of diffraction and phase information is accounted for exactly,
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which has been applied to compute the backscattering properties of large hexag-
onal ice columns. For size parameters much larger than 60, then ray-tracing can
be applied to any arbitrary ice crystal shape. The first solution of the 3D problem
assuming hexagonal columns was achieved by Wendling et al. (1979) but without
polarization. Polarization was incorportated by Cai and Liou (1982) and further
refinements such as including birefringence and particular ice crystal orienta-
tions were reported in Takano and Liou (1989a,b). The ray-tracing method was
applied to more complex shapes most notably by Macke (1993) and Macke et
al. (1996) in which it was shown for the first time that the polycrystal could
produce asymmetry parameters as low as 0.74 at non-absorbing wavelengths.
Borovoi et al. (2000) computed the backscattering cross-section of arbitrarily
oriented hexagonal ice columns at visible wavelengths using ray-tracing. It was
found that for a tilt angle of 32.5◦ a very large backscattered intensity peak
occurs, which is explained by a corner-reflector effect. The authors suggest that
this finding could be used to discriminate between aligned hexagonal ice plates
and hexagonal ice columns by using slant lidar. More recently, Borovoi et al.
(2005) proposed an optical model for cirrus clouds by parametrizing the phase
functions for a variety of randomly oriented ice crystal particles by means of
weight coefficients for the wedges occurring in each ice crystal shape.

Other methods that have been suggested to compute the single scattering
properties of nonspherical ice crystals are modified anomalous diffraction theory
proposed by Mitchell et al. (1996), which has been further developed in Mitchell
(2002) and Mitchell et al. (2006). The modified anomalous diffraction theory is
based on the Bryant and Latimer (1969) approximation (BL), which approxi-
mates the original van de Hulst (1957) anomalous diffraction theory (ADT). The
original ADT assumes that the size of particle is much greater than the incident
wavelength and that the refractive index is close to unity. The BL approach at-
tempts to apply ADT to nonspherical particles by taking the ratio of the particle
volume-to-averaged cross-sectional area as a size and phase shift parameter. The
original ADT and the BL approximation do not incorporate internal reflection,
surface waves or large angle diffraction. The approach of Mitchell et al. (1996)
was to incorporate this missing physics into the BL approximation. However,
Sun and Fu (2001) compared the Bryant and Latimer approximation against ex-
act ADT for computing the extinction coefficient of the finite hexagonal column
and showed that BL could be in significant error. Though Mitchell et al. (2001,
2006) showed that modified ADT was in good agreement with laboratory-based
experiments of hexagonal column ice crystal extinction efficiency between the
wavelengths of 2.2 and 16.0 µm. Since ADT has no angle dependence (except
at θ → 0◦) then neither the P11 element at arbitrary θ nor the asymmetry
parameter can be calculated.

The application of the electromagnetic methods to the geometries outlined in
section 2.2 is a complex task. Therefore, Baran (2003b) proposed that it might
be possible to simulate the infrared properties of more complex ice crystals by
representing the complex ensemble by some ensemble of symmetric ice crystals
of varying aspect ratio. In the paper by Baran (2003b) the T-matrix method
due to Mishchenko and Travis (1998) was applied to an ensemble of circular ice
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cylinders and by conserving the volume-to-projected area ratio of the hexagonal
ice aggregate it was shown that the total optical properties (Cext, ω0 and g) of
the more complex shape could be simulated to well within 4% when compared
against solutions from FDTD. The method in principle could be applied to any
ice crystal shape at infrared wavelengths and, since Cext and ω0 depend largely
on the volume-to-area ratio, it is expected to work well for those quantities.
Similar approaches of representing scattering from ensembles of complex non-
symmetric shapes by ensembles of more symmetric shapes have also been applied
to scattering by aerosols (Kahnert et al., 2002a). The difficulty with using ensem-
bles of simpler shapes to represent scattering from more complex shapes is that
angle-dependent quantities such as the matrix elements in Eq. (2.1) are more
difficult to simulate as demonstrated by Kahnert et al. (2002b). It was shown by
Lee et al. (2003) that randomly oriented finite circular cylinders could be used
to simulate the single scattering properties of randomly oriented hexagonal ice
columns at infrared wavelengths to within a few percent.

To bridge the gap between small and large size parameter space Liou et al.
(2000) proposed the ‘unified’ method where FDTD and IGO are combined to
calculate the single scattering properties over the whole ice crystal PSD, and
in principle this method can be applied to any ice crystal shape. The approach
proposed by Fu et al. (1999) is similar to the ‘unified’ method.

The methods outlined in this section can be used to compute the single scat-
tering properties of the ice crystal realizations outlined in section 2.2. However,
the problem in computing the radiative properties of cirrus with such a diversity
of ice crystal shape is how best to represent the single scattering properties by
some single dimension? Should that dimension be maximum size, chord length,
or facet length? What is required is a common dimension such that the radiative
properties can be computed independently of ice crystal shape and shape of the
PSD. For example, water clouds are more straightforward (Slingo, 1989) since
these are composed of water spheres and their PSDs are not as dispersed as cir-
rus. In recent years there appears to have been a consensus of opinion as to which
dimension to apply in computing the radiative properties of cirrus. Initially, it
was proposed by Foot (1988) that cirrus radiative properties might well be repre-
sented if the distribution of ice crystal shapes and sizes was expressed as a ratio
of the distribution volume-to-distribution averaged cross-section. This propo-
sition of an effective dimension has now been adopted by a number of authors
when computing cirrus solar bulk single scattering properties or retrieving cirrus
microphysical/macrophysical properties (Francis et al., 1994; Fu, 1996; Yang et
al., 1997; McFarquhar and Heymsfield, 1998; Wyser and Yang, 1998; Mitchell,
2002; McFarquhar et al., 2002; Baran et al., 2003; Baran and Havemann, 2004).
Thus throughout the rest of this chapter the cirrus PSD is characterized by an
effective dimension called the effective diameter, De, defined as,

De = 3/2
∫

V (Dm)n(Dm) dDm

/ ∫
〈S(Dm)〉 n(Dm) dDm (2.6)
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where V (Dm) is the geometric volume of the ice crystal and 〈S(Dm)〉 is the
orientationally averaged geometrical cross-section of ice crystals in a unit volume
of a cloud. For monodisperse spheres, De equates to their diameters.

It follows for large convex ice crystals in random orientation (Kokhanovsky,
2004),

Kext = 3f/De 2.6a

where f = IWC/ρ is the volumetric concentration of ice crystals, ρ is the den-
sity of ice. This confirms that Eq. (2.6) is a useful parameter to characterize
size/shape distributions with respect to calculations of light extinction in cirrus.
How universal is Eq. (2.6a) for calculations of Kext? Can this concept be applied
at all wavelengths? In the papers by Mitchell (2002) and Baran (2005) it is shown
that the concept breaks down at infrared wavelengths. This is demonstrated in
Fig. 2.8 where the mass extinction coefficient (Kext/IWC) for 30 PSDs is plotted
as a function of De for six wavelengths in the infrared. The figure from Baran
(2005) shows that the mass extinction coefficient for the shorter wavelengths is
still inversely proportional to De as given by Eq. (2.6a), but as the wavelength
increases this relationship begins to break down. At wavelengths between 20 µm
to 30 µm the concept outlined above (see Eqs. (2.6) and (2.6a)) cannot be gen-
erally applied to compute the radiative properties of cirrus. Eq. (2.6a) only has
physical meaning when the ice crystal size is much larger than the incident wave-
length; this is not surprising since it is fundamentally based on the principle of
geometric optics. It should be pointed out here that the simple optical parame-
ter – effective diameter relationship does not hold for the asymmetry parameter
since this fundamentally depends on the shape of ice crystals as demonstrated
by Kokhanovsky and Macke (1997) and Wyser and Yang (1998).

Given the geometric ice crystal realizations described in section 2.2 and the
means to compute their single scattering properties the next section describes
how these ice crystal models are tested using remote sensing.

2.4 Airborne and satellite remote sensing
of cirrus at solar and infrared wavelengths

As pointed out in section 2.3 the two most useful quantities to use from Eq. (2.1)
in the remote sensing of cirrus are the phase function and the degree of linear
polarization. Calculations of the phase function and the ratio P12/P11 are shown
in Fig. 2.9 and Fig. 2.10, respectively. The calculations assume a bullet-rosette
(Fig. 2.3 (d)) and a distorted bullet-rosette each having a maximum dimension
of 100 µm using a complex refractive index for ice taken from Warren (1984) at
the wavelength of 0.865 µm. The reason why distortion is applied in the calcu-
lations shown in Figs. 2.9 and 2.10 to the ice crystal geometry is to randomize
the ice crystal such that the symmetry properties that are responsible for op-
tical features such as halos are removed, thereby producing a featureless phase
function. The method of ray-tracing due to Macke et al. (1996) was applied to
the bullet-rosette geometry to calculate the scattering matrix elements. Also,
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Fig. 2.8. The mass extinction coefficient, Kext/IWC in units of g−1m2, plotted as a
function of effective diameter, De, at the wavelengths of: (a) 4.0 µm, (b) 8.25 µm, (c)
16.0 µm, (d) 20.0 µm, (e) 25.0 µm, (f) 30.0 µm. The mass extinction coefficient has been
calculated using size distribution functions from Fu (1996) and Mitchell et al. (1996)
(reproduced, with permission, from Baran, 2005).

shown in Fig. 2.9 for comparison is the analytic phase function due to Baran et
al. (2001b). This function is defined by different expressions depending on the
asymmetry parameter. In particular, it follows
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Fig. 2.9. The phase function plotted as a function of scattering angle assuming a
randomly oriented six-branched bullet-rosette shown as the dashed line. The phase
function of the randomized six-branch bullet-rosette is shown as the dashed-dotted
line and the full line represents the analytic phase function calculated assuming an
asymmetry parameter value of 0.78. The six-branched bullet-rosette is assumed to
have a size of 100 µm and the incident wavelength is assumed to be 0.865 µm with an
associated complex refractive index for ice of 1.304 + i2.40 × 10−7 (reproduced, with
permission, from Baran and Labonnote, 2006).

P11 =




1 − g2

(1 + g2 − 2g cos θ)3/2 α cos θ : θ ≤ 54.8◦

1 − g2

(1 + g2 − 1.5g cos θ sin θ)3/2 : θ > 54.8◦
(2.7)

at g < 0.7 and

P11 =




1 − g2

(1 + g2 − 2g cos θ)3/2 α cos128 θ : θ ≤ 3◦

1 − g2

1 + g2 − 2g cos θ(1.3θ)1.2 cos θ : 3◦ < θ ≤ 30◦

1 − g2

1 + g2 − 2g cos θ(∆θ)σ
cos θ : 30◦ < θ ≤ 54.8◦

1 − g2

(1 + g2 − 1.5g cos θ sin θ)3/2 : 54.8◦ < θ ≤ 95◦

P11 = 95◦ : θ > 95◦

(2.8)
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Table 2.1. Values of the coefficients A, B, C, and σ for various values of the asymmetry
parameter, g

g A B C σ

0.70 ≤ g ≤ 0.80 148.1 202.5 49.49 0.68
0.80 ≤ g ≤ 0.90 277.1 510.2 232.9 0.68

g ≥ 0.90 421.9 827.1 406.3 0.71

Table 2.2.Values of the coefficient β for various values of the asymmetry parameter, g

g β

g < 0.30 1.25
0.30 ≤ g < 0.45 1.50
0.45 ≤ g < 0.60 1.23
0.60 ≤ g < 0.70 1.095

at g ≥ 0.70; Here σ is given in Table 2.1 and

∆ =
(

1 − g

4.6

)
+ g (2.9)

The value of α is given by the following equations for the values of g shown,

α =




β√
1 − g

: g < 0.3

1√
βg

: 0.3 ≤ g < 0.7

N√
g

: g ≥ 0.7

(2.10)

In Eq. (2.10), N is a polynomial fit to the asymmetry parameter to ensure
that P11 is correctly normalized to 4π, and N = A − Bg + Cg2. The values
for each of the coefficients A, B, C and σ for various ranges of g are given in
Table 2.1 and values for β are given in Table 2.2.

This is a featureless phase function modelled on a laboratory phase function
obtained from an ensemble of nonspherical ice crystals (Volkovitskiy et al., 1980,
referred to as the VPP phase function); it is a linear-piecewise parametrization
of the Henyey–Greenstein phase function (Henyey and Greenstein, 1941) and is
entirely generated by the asymmetry parameter.

As can be seen from Figs. 2.1 and 2.2, atmospheric ice crystals are not pris-
tine. They may be distorted or roughened, or contain inclusions. All these pro-
cesses would remove or reduce any angular features present on the scattering
phase function or degree of linear polarization (Macke et al., 1996; Mishchenko
and Macke, 1997; Yang and Liou, 1998; Labonnote et al., 2001; Sun et al., 2004;
Ulanowski et al., 2006). Fig. 2.9 shows that with no distortion the bullet-rosette
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Fig. 2.10. Same as Fig. 2.9 but for the degree of linear polarization and the six-
branched bullet-rosette and randomized six-branched bullet-rosette are represented by
the full line and dashed-dotted line, respectively (reproduced, with permission, from
Baran and Labonnote, 2006).

exhibits typical halo features present on the phase function at scattering an-
gles of about 10◦, 22◦, and 42◦ with the ‘ice bow’ appearing at about 150◦ and
retro-reflection peak at 180◦. All pristine faceted ice crystals such as hexagonal
columns, and hexagonal plates would also exhibit typical halos and enhanced
backscattering intensities (Borovoi et al., 2000). The distorted bullet-rosette ap-
pears featureless with distinct halos and backscattering enhanced intensities re-
moved and by a scattering angle of 50◦ matches the analytic phase function. The
angular features present in the undistorted bullet-rosette phase function are re-
flected in the degree of linear polarization shown in Fig. 2.10. Therefore, Fig. 2.9
and Fig. 2.10 suggest that remote sensing instrumentation may be used to test
whether cirrus is chiefly composed of pristine faceted ice crystals or more com-
plex particle shapes. The rest of this chapter concentrates on how the idealized
model geometries presented in section 2.2 and their predicted single scatter-
ing properties described in section 2.3 can be tested using aircraft and satellite
data.

2.4.1 Airborne remote sensing of cirrus

To test ice crystal model predictions of the scattering phase function multi-
angular radiometric measurements are required of cirrus from below and above
the cloud. In the paper by Foot (1988) an airborne-based method of testing
model phase functions is described where the aircraft flies in an orbit below or
above the cirrus at a particular banking angle, at a distance of 1 km or sev-
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eral km from the cirrus base or top. With the solar zenith angle fixed, and the
azimuthal angle varying, the scattered radiance from the same section of cirrus
is measured as the orbit is completed, thereby describing the scattered radiance,
in principle, between the scattering angles of about 5◦ to 180◦, depending on
banking angle and solar geometry. An example of measuring the phase function
of cirrus using this airborne technique is shown in Fig. 2.11 from Baran et al.
(2001b, Fig. 4). The figure is derived from aircraft-measured multi-angle radi-
ance measurements obtained at the wavelength of 0.87 µm from the aircraft orbit
below the cirrus on the 9th November 1995 off the north-east coast of England.
The solar zenith angle at the time of the orbit was measured to be 74◦ and the
aircraft was banked at an angle of about 53◦, which enables the phase function
to be sampled between the scattering angles of 21◦ to 127◦ relative to the Sun.
Each set of results shown in Fig. 2.11 were offset by a factor 10 to aid clarity.
The model ice crystals assumed in Fig. 2.11 are the small hexagonal ice col-
umn, small six-branched bullet-rosette, large six-branched bullet-rosette, small
hexagonal ice aggregate, large hexagonal ice aggregate, the VPP and analytic
phase functions. The single scattering properties for each of the ice crystal mod-
els were obtained from the method of improved geometric optics due to Yang
and Liou (1996) and are listed in Table 2.3 in the form of De, ω0 and g. The
asymmetry parameter value assumed to generate the analytic phase function
in Fig. 2.11 was 0.80 and the VPP phase function asymmetry parameter was
estimated to be 0.85 by Foot (1988). The measured solar radiances were simu-
lated using a Monte Carlo multiple-scattering model due to Kite (1987), with
different values of extinction optical thickness, τext, De, and solar zenith angle as
input parameters. The figure shows that single model phase functions represent-
ing hexagonal ice columns, hexagonal ice plates, bullet-rosettes or the hexagonal
ice aggregate do not describe the measured angular radiometric data well be-
tween the scattering angles of 20◦ to about 125◦ at the wavelength of 0.87 µm.
However, phase functions such as the Volkovitskiy et al. (1980) or analytic that
represent scattering from an ensemble collection of nonspherical ice crystals do
represent the measured angular radiometric data well. This finding is consistent
with the result found by Foot (1988) and Francis et al. (1999). The papers by
Francis et al. (1999) and Baran et al. (2001b) demonstrate that phase functions,

Table 2.3. Single-ice-crystal models assuming the small hexagonal ice column (Small
column), small six-branched bullet-rosette (Small bullet/rosette), large six-branched
bullet-rosette (Large bullet/rosette), small hexagonal ice aggregate (Small aggregate),
and large hexagonal ice aggregate (Large aggregate)

Ice crystal model De (µm) ω0 g

Small column 9.3 1.0 0.67
Small bullet/rosette 4.0 1.0 0.73
Large bullet/rosette 79.0 1.0 0.83
Small aggregate 5.30 1.0 0.76
Large aggregate 134.0 1.0 0.77
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Fig. 2.11. The measured transmitted 0.87 µm radiance plotted against scattering angle
with the filled circles representing the airborne radiance measurements and the full lines
representing the predicted intensity assuming various ice crystal models. The model ice
crystals assumed were the small hexagonal ice column, Small b/r (small bullet-rosette),
Large b/r (large bullet-rosette), Small aggr (hexagonal aggregate), Large aggr (hexag-
onal aggregate), the Volkovitskiy et al. 1980 and analytic phase functions, respectively.
The values on the right-hand side of the figure are the optimally derived optical thick-
ness, τ , derived for each of the assumed ice crystal models. The mean experimental
value found for τ was τ = 0.75 ± 0.08 (reproduced, with permission, from Baran et al.,
2001).

such as the analytic, representing an ensemble of ice crystals rather than single
ice crystals best represent multi-angular radiometric data obtained from below
cirrus.

The infrared radiative properties of cirrus are also very important when
parametrizing cirrus for climate models as demonstrated by Edwards et al.
(2007). Recently, simultaneous airborne high-resolution measurements of cirrus
at solar and infrared wavelengths have become available and examples of such
measurements are shown in Baran and Francis (2004). In that paper the high-
resolution radiometric measurements were obtained in eleven sections above a
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piece of semi-transparent cirrus located north of Scotland during October 2000.
Since both solar and infrared measurements were made simultaneously the op-
tical thickness above the cloud was retrieved at the wavelengths of 0.87 µm and
11.0 µm assuming hexagonal ice columns and randomized hexagonal ice aggre-
gates. To simulate the solar and infrared high-resolution measurements and re-
trieve the optical thickness the radiative transfer model used was due to Ed-
wards and Slingo (1996) assuming a plane-parallel cloud, which has been ex-
tended to radiance space by using the spherical harmonic method. This method
fully takes into account the strong forward scattering peak of the ice crystal
phase function (Ringer et al., 2003). The angular distribution of the radiance
is decomposed into a series of spherical harmonics, with the order at which
the infinite series is truncated determining the accuracy of the calculated ra-
diance. For the radiance calculations presented in this chapter the truncation
of the direct radiance has been set to 399, with the diffuse truncation being
set to 21. For the infrared calculations, the diffuse truncation has been set to
19. Applying this radiative transfer model to the data the De (see Eq. (2.6))
values found for the hexagonal ice column that best fits both the solar and
infrared high-resolution measurements were 67 µm and 87 µm. The aspect ra-
tio of the hexagonal ice columns is based on the tabulations from Mitchell and
Arnott (1994). The hexagonal ice aggregate is randomized by roughening the
mantle surfaces as described in Yang and Liou (1998) and the best-fit De value
found for this model was 78 µm. Figure 2.12 shows the retrieved optical thick-
ness for all eleven sections assuming the two model ice crystals. In the case of
the hexagonal ice column consistency in the retrieved optical thickness could
not be found for all eleven sections. However, for the randomized ice aggregate
consistency was found for all eleven sections. The figure demonstrates that for
this case the radiative properties of the cirrus were best represented by complex
randomized ice crystals. An example of high-resolution infrared measurements
obtained from the optically thinnest section is shown in Fig. 2.13 (from Baran
and Francis, 2004, Fig. 9c). Figure 2.13 shows brightness temperature differ-
ences between model and measurements; the dotted line shows the scene vari-
ability (i.e., the cloud was not uniform) in the high-resolution measurements.
The figure shows that the cirrus radiative properties between the wavelengths
of 3.3 µm and 16.0 µm are well predicted within the bounds of the scene vari-
ability for this particular case. In the case of airborne remote sensing of cirrus
the generality of testing the predictions of phase functions or single scatter-
ing properties by assuming some ice crystal model is limited to relatively few
cases. For this reason it is important to obtain space-based measurements of
cirrus through the use of satellites, which are able to sample cirrus over many
cases.
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Fig. 2.12. Comparison of the best-fit optical thickness (referenced to τext at 0.87 µm),
retrieved from the airborne radiance measurements at 0.87 µm and infrared measure-
ments at 11.0 µm, assuming (a) pristine hexagonal ice columns and (b) hexagonal ice
aggregates (reproduced, with permission, from Baran and Francis, 2004).

Fig. 2.13. An example of high-resolution radiometric data showing brightness tem-
perature differences plotted against wavenumber in units of cm−1 (ν = 10000/λ; so
ν = 1000 cm−1 corresponds to λ = 10.0 µm) between simulations assuming the hexago-
nal ice aggregate model and the measurements. The dotted line in the figure represents
the scene variability (after Baran and Francis, 2004).
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2.4.2 Satellite remote sensing of cirrus

So that the single scattering properties of model ice crystals can be tested it is
necessary to have space-based instruments which are able to sample the model
phase function and/or polarization properties at a number of scattering angles.
Currently, there are three satellites that are capable of testing model phase func-
tions. One such instrument is the Along Track Scanning Radiometer (ATSR-
2) described in Baran et al. (1999). This instrument is dual-viewing and has
been used to infer ice crystal shape at non-absorbing and absorbing wavelengths
(Baran et al., 1999, 2003). More recently, McFarlane et al. (2005) have made use
of an instrument called the Multiangle Imaging Spectroradiometer (MISR) to
infer ice crystal habit. Combining MISR with the Moderate Resolution Imaging
Spectroradiometer instrument (MODIS) McFarlane et al. (2005) are able not
only to estimate ice crystal shape but also to retrieve ice crystal size, since both
instruments are located on the same satellite. The MISR instrument measures
at solar wavelengths and has up to nine viewing angles, whilst the single-view
MODIS instrument has its channels located at non-absorbing and absorbing
wavelengths, which makes the retrieval of ice crystal size possible (Baum et al.,
2000). The third instrument that can be utilized to study the angular reflection
properties of cirrus is called the Polarization and Directionality of the Earth’s
Reflectances (POLDER) and a description of this instrument can be found in
Buriez et al. (1997). The unique feature of POLDER is that it measures not
only light reflection from cirrus but also the polarized reflectance defined as the
ratio between the normalized polarized radiance and the solar zenith angle. The
POLDER instrument can measure cirrus reflection function and polarization
properties at up to 14 different viewing directions and can sample the phase
function and the degree of linear polarization between the scattering angles
from 60◦ to 180◦ dependent on latitudinal position as described in the paper
by Labonnote et al. (2001). This simultaneous combination of measurements in
both reflection and polarization space is very important for inferring information
about the complexity of cirrus particle habits, as demonstrated by Baran and
Labonnote (2006). The importance of this combination in terms of reflection is
shown in Fig. 2.14 (taken from Baran and Labonnote (2006, Fig. 6), which shows
the POLDER measured spherical albedo (SA) differences (i.e., measurements –
model) for a variety of randomized ice crystal models plotted as a function of
scattering angle. The methodology of utilizing SA to test ice crystal model phase
functions has been previously given in Labonnote et al. (2001), but a brief de-
scription of this approach is given here. To compute SA the cloud bi-directional
reflection, R(µ, µ0, φ-φ0), is found by:

R(µ, µ0, φ-φ0) = πI(µ, µ0, φ-φ0)/µ0E0 (2.11)

where I(µ, µ0, φ-φ0) is the reflected solar radiance from cloud-top, E0 is the
incident solar flux density, µ and µ0 are cosines of the zenith view and solar
zenith angles, respectively. The relative azimuth is given by φ-φ0.
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Fig. 2.14. Normalized density of selected pixel directions (the red colour represents
more than 80% of the pixels) against scattering angle, showing differences between the
retrieved spherical albedo obtained at the wavelength of 0.87 µm and the directionally
averaged spherical albedo for the (a) chain-like hexagonal aggregate (Fig. 2.3 (g)) and
(b) hexagonal ice aggregate (Fig. 2.3 (e)]. The assumed ice crystal parameters used in
the calculations are given in Table 2.4. The degree of randomization is shown in the
upper right-hand side of the figures and the standard deviation of the residual spherical
albedo represented by σ is also shown in the figures (reproduced, with permission, from
Baran and Labonnote, 2006).

Table 2.4. The physical dimensions of each ice crystal model assumed in the POLDER
radiative transfer calculations

Model Maximal dimension, µm

Six-branched bullet-rosette 100
Chain-like aggregate 100
Ice aggregate 100
Polycrystal 100
IHM 220
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Eq. (2.11) can be integrated over all µ and φ-φ0 to give the plane albedo,
A(µ0), given by

A(µ0) =
1
π

∫∫
R(µ, µ0, φ-φ0)µ dµ dφ (2.12)

and Eq. (2.12) can be integrated over all solar zenith angles to give the cloud
spherical albedo (SA) a, given by

a = 2
∫

A(µ0)µ0 dµ0 (2.13)

The measurements of bi-directional reflectance at the wavelength of 0.670 µm
are used to retrieve the cloud optical thickness in each viewing direction, which,
assuming a black underlying surface, is equivalent to SA (see Doutriaux-Boucher
et al., 2000; Labonnote et al., 2001). The measured SAs are simulated using a
radiative transfer model based on the discrete-ordinates method due to Stamnes
et al. (1988). The radiative transfer model assumes a homogeneous plane-parallel
cloud and uses as input the satellite–Sun geometry, assumed ice crystal model
phase function, the optical thickness, and the single scattering albedo, which is
unity. If the phase function model were a perfect representation of scattering
from cirrus then the retrieved SA would be independent of scattering angle. It
is this aspect that Fig. 2.14 is testing.

The POLDER data shown in the figure was obtained during one day on the
25th June 2003 and the POLDER pixels were globally distributed and only pix-
els located over the sea were included. As can be seen from the figure both the
randomized chain-like aggregate (Fig. 2.3 (g)) and randomized hexagonal ice ag-
gregate (Fig. 2.3 (e)) do minimize the POLDER spherical albedo measurements
well, with the standard deviations for each of the ice crystal models appearing
quite similar. The reason for this similarity is that if the ice crystals are suf-
ficiently randomized then the phase functions appear featureless, as shown in
Fig. 2.9. However, the geometrical forms of each of the ice crystal models are
very different, as shown in Fig. 2.3, but using reflection measurements alone is
not sufficient to distinguish which of the randomized ice crystals best explains
the POLDER measurements. However, the POLDER instrument also measures
the polarized reflectance and, as shown in Fig. 2.10, polarization properties de-
pend strongly on ice crystal shape. Perhaps this measurement can be used to
distinguish between different types of randomized ice crystal? The results for
the measured polarized reflectance assuming a variety of ice crystal models de-
scribed in Fig. 2.3 are shown in Fig. 2.15 (a) and 2.15 (b) (from Baran and
Labonnote (2006, Figs. 7a and Fig. 7b). Figure 2.15 (a) shows the POLDER-
measured polarized reflectance plotted as a function of scattering angle with
each of the ice crystal models with and without randomization represented by
the various lines shown in the figure. The figure shows that when randomization
is extreme the fit to the polarized reflection becomes worse; this is evident for
the hexagonal ice aggregate and polycrystal models. However, the hexagonal ice
aggregate did minimize the spherical albedo differences with such a randomiza-
tion but this same model does not describe the POLDER-measured polarized
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Fig. 2.15. (a) Same as Fig. 2.14 but for the polarized reflectance plotted against
scattering angle for a variety of ice crystal models. The ice crystal parameters assumed
in the calculations are given in Table 2.4. The ice crystals models are shown on the
right-hand side of the figure together with the degree of distortion. (b) Same as (a)
but for a single randomization showing polarization results for the six-branched bullet-
rosette (green line), chain-like aggregate (black line), and the hexagonal ice aggregate
(red line) (reproduced, with permission, from Baran and Labonnote, 2006).

reflectance. Therefore, in order to eliminate such models, intensity measurements
alone are insufficient and additional information such as polarized reflectance is
required.

Fig. 2.15 (b) shows that more spatial ice crystals such as the randomized
chain-like aggregate and randomized bullet-rosette do satisfactorily explain the
measured polarized reflectance, whilst more compact ice crystals such as the
hexagonal ice aggregate do not. Again the geometrical form of the bullet-rosette
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and chain-like aggregate are very different (see Fig. 2.3), but not even a combi-
nation of reflection and polarized reflection can distinguish between them. The
reason for this is that if sufficient randomization is applied to ice crystal mod-
els then all elements of the scattering matrix become featureless thus making
distinction between more complex habits problematic. In order to distinguish
between more complex randomized ice crystal models, further information is
required, which could take the form of two-dimensional scattering patterns de-
scribed by Ulanowski et al. (2006) or an enhanced version of the CPI. The utility
of using the first three Stokes parameters (I, Q, and U) in the remote sensing
of cirrus is further demonstrated by Ou et al. (2005). They show that by using
simulated measurements at the wavelengths of 0.865 µm and 2.25 µm there is
sensitivity to ice crystal shape, size and surface roughness.

2.5 Summary

This chapter has reviewed the current understanding of the optical and radiative
properties of cirrus and it has demonstrated the importance of this cloud to cli-
mate modelling and remote sensing. The populations of nonspherical ice crystals
that exist in cirrus are diverse; however, there is now sufficient evidence to say
that pristine ice crystals such as hexagonal ice columns and hexagonal ice plates
are uncommon. The most common nonspherical ice crystal type that inhabits
synoptically generated cirrus is bullet-rosettes whilst anvil cirrus is mostly popu-
lated by non-symmetric irregulars. Representing these types of crystals by some
geometric model such that the full single scattering properties can be solved is
problematic. The current consensus appears to be that representing the variabil-
ity of complex shapes by one single ice crystal model geometry does not appear
to be supported either by in situ measurements of the IWC or airborne remote
sensing of the scattering phase function. Representing the actual diversity of
shapes by some ensemble model of ice crystal shapes, which are individually
randomized, and that ensemble is able to replicate the measured IWC to a rea-
sonable degree of accuracy is the better way forward. This approach reconciles
the single scattering properties of the ensemble with macroscopic quantities such
as IWC for any given particle size distribution function. This link between the
cirrus single scattering properties and the amount of ice mass or IWC is the
fundamental problem to be solved.

In recent years there have been significant advances in the development of
electromagnetic methods to solve the single scattering properties of nonspher-
ical ice crystals. This is especially true for the T-matrix and FDTD methods;
however, there is still no one method that can solve the complete light scattering
problem over the entire cirrus particle size distribution function. There is still
reliance on approximations such as physical and geometric optics to bridge the
gap between the so-called ‘exact’ methods and approximations. Though there
are methods that can in principle be applied to any ice crystal shape given ap-
propriate computational resources. The scattering properties of cirrus appear to
be best represented by phase functions which are smooth and featureless; this
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is also true of the other elements of the scattering matrix. The reason for this
featureless nature of the scattering phase function is due to the most common
types of ice crystals having a non-symmetric form which may also be distorted or
roughened, and/or contain inclusions of air or aerosol. In essence, the complete
scattering properties from cirrus ice crystal ensembles are of a simple functional
form, what is required is a computational method that can reproduce this sim-
plicity from a given ensemble.

In order to solve the cirrus problem as outlined above, further airborne field
campaigns are certainly required that are able to further quantify the cirrus
particle size distribution function, and especially the role of small ice crystals
less than 100 µm in size, and the most common geometrical form of these small
ice crystals. Quantification of ice crystal shapes from different locations, heights
and seasons, and instrumentation to measure their masses is also required. As
regards airborne remote sensing, further measurements of the scattering phase
function at non-absorbing and absorbing wavelengths over a wide range of scat-
tering angle are needed. The development of high-resolution spectrometers that
are able to measure cirrus radiances at both solar and infrared wavelengths
simultaneously should enable rigorous testing of the modelled cirrus single scat-
tering properties. As this chapter has shown, combining intensity measurements
with polarization measurements is important when trying to distinguish between
complex cirrus ice crystal models. However, as shown in this chapter, due to the
simplicity of the scattering matrix elements for complex randomized ice crystals
with very different geometrical forms, using both intensity and polarization to
distinguish between such ice crystals is still problematic. For instance, it follows
from Fig. 2.14 (a) (or Fig. 2.6 of Baran and Labonnote, 2006), and Fig. 2.15 that
both the distorted chain-like aggregates (Fig. 2.3 (g)) and six-branched bullet-
rosettes (Fig. 2.3 (d)) well represent the radiative and polarization properties
of cirrus. These shapes are also similar to those shown in Fig. 2.1. Certainly,
the use of intensity alone measurements is insufficient. Distinguishing between
complex non-symmetric ice crystals might be achieved by using 2D scattering
patterns or an enhanced version of the CPI. This distinction is important since
at infrared wavelengths the absorption properties of different non-symmetric ice
crystals will differ and will therefore not have the same radiative responses in
climate models.
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