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4.1 Introduction

Lidars are equipment, consisting of a laser and a photo-receiver, that mea-
sures the backward scattering of light. They appeared in the 1960s (Fiocco and
Smullin, 1963), i.e., immediately after the invention of the laser, and since then
they have been actively used in the problems of natural media monitoring. Lidars
are of great use in providing atmosphere and ocean pollution control, in control
of atmospheric gases, and in measuring meteorological and climate characteris-
tics. Generation of a beam of high power and small angular divergence makes
the great advantage of lidars over projector sounding, having existed before.
The possibility of accurate wavelength tuning, as well as spectral return mea-
suring, allows the determination of the chemical composition of the atmosphere
and the biochemical composition of the ocean. Thanks to the measurement of
scattered light polarization degree one can learn about the shape of scatterers.
Furthermore, as lasers are able to generate powerful pulses of short duration,
there appears the possibility of measuring time-dependent returns, i.e., measur-
ing not only the integral optical characteristics of a medium, but also their spatial
distribution. These features made lidars a powerful tool in the investigation of
geophysical media.

Besides the usual, elastic, lidar sounding, recently the methods of inelastic,
particularly Raman, lidar sounding, have been developed. These methods pro-
vide a wide range of new possibilities (Ansmann et al., 1990, 1992a; Reichardt
et al., 1996). Raman lidar sounding implies sounding based on receiving the
signal of Raman scattering, in which the scattered light shifts frequency to a
value equal to the eigenfrequency of a molecule of the scattering substance. The
Raman lidar return is proportional to the scattering substance concentration.
Thus, measuring the Raman lidar return allows one to establish the presence
of substances whose eigenfrequencies correspond to lines in the measured spec-
trum. On the other hand, well-known characteristics of Raman scattering by
stable components (nitrogen in the atmosphere and water in the ocean) permits
the use of the Raman lidar return as a reference (calibration) signal for other
measurements.
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The growing interest in Raman sounding methods is not only due to their
advantages and their additional possibilities. It is also due to the fact that the
technical capabilities to fix the weak light signal have been steadily improving.
For example, thirty years ago Raman scattering by atmospheric nitrogen in a
pulse lidar regime could be fixed from altitudes of up to 3 km (Cohen et al., 1978).
Nowadays the Raman lidar return is accurately fixed from altitudes of 30 km
and more (Ansmann et al., 1992b; Sherlock et al., 1999a). Even the possibility
of spaceborne Raman lidar measurement is discussed (Girolamo et al., 2006).

Joint use of both elastic and inelastic, including Raman, scattering suggests
a future trend to discover new ways of sounding and measuring properties of
various turbid media.

Nowadays, most of the methods of medium characteristics retrieval use the
lidar equation within the framework of single scattering approximation. They
consider multiple scattering as an interference to be suppressed. However, as
many authors have mentioned, in most geophysical media (such as clouds, dense
aerosols or seawater) multiple scattering plays the key role in lidar return form-
ing (Bruscaglioni et al., 1999; Eloranta, 1972; Reichardt et al., 2000; Weinman
and Shipley, 1972). There are also lidar systems, in which the signal is completely
defined by multiple scattering. These are multiple-field-of-view lidars (that mea-
sure light fluxes at several angle intervals) (Bissonnette and Hutt, 1990; Roy et
al., 1997) and imaging lidars (that measure the irradiance distribution in the
focal plane of the receiver, i.e., the angular distribution of radiance at the en-
trance of the receiver optics) (Muscari et al., 1996). In both cases, the problem
is not to estimate the contribution of multiple scattering as some correction, but
to describe it correctly in a qualitative and quantitative way.

The problem of multiple scattering in lidar measurements is a focus of interest
of the international workshop MUSCLE (MUltiple SCattering in Lidar Experi-
ments), which has succeeded both in simulation of multiple scattering and in its
use in the inverse problem s for the case of elastic lidar sounding (Muscari et al.,
1996; Zege et al., 2003a; Bruscaglioni et al., 1999). However, for a long time few
attempts were made to simulate multiple scattering for Raman lidar sounding
(Bruscaglioni et al., 1999; Wandinger, 1998) and practically no attempts were
made to include it in the inverse problem.

This chapter gives a short review of the existing methods of Raman lidar
sounding of geophysical media, and it presents the theory for the Raman lidar
return with multiple scattering and the new methods of using multiple scattering
to retrieve the microphysical characteristics of a light scattering medium.

4.2 Review of the existing methods
of Raman lidar sounding

The idea of using Raman scattering in lidar sounding of geophysical media ap-
peared in the 1960s. However its implementation was delayed, primarily because
of the weak signal power. In the late 1970s, there appeared lidar measurements
of Raman scattering from water while sounding ocean (Klyshko and Fadeev,
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1978). Methods of fixing Raman scattering from atmospheric nitrogen were sug-
gested by Egert et al. (1983). Nowadays there are a lot of lidar systems all over
the world. These systems make it possible to measure Raman scattering not
only from atmospheric nitrogen, but also from water vapour and other atmo-
spheric gases of low concentration, not to mention seawater. Raman lidar is a
common instrument to get information about the composition of the sounding
medium, its temperature and humidity (for atmosphere), and about the pres-
ence of suspended particles (cloud droplets, aerosols, hydrosols), their chemical
properties and sizes (Ansmann et al., 1990, 1992a, 1992b; Reichardt et al., 1996,
2000; Wandinger et al., 1995; Roy et al., 1997; Sherlock et al., 1999a, 1999b;
Whiteman and Melfi, 1999).

This chapter describes the main modern methods of sounding and processing
the Raman lidar return.

4.2.1 Lidar equation

The lidar equation is an expression that relates the lidar return F (z) (the energy
of light coming from the depth interval from z to z+dz divided by dz) to optical
medium characteristics and lidar system parameters. Usually it is written in the
framework of the single scattering approximation. For elastic lidar return it has
the form:

F (z) = Aσ(z, π) exp
(

−2
∫ z

0
ε(z′) dz′

)
, (4.1)

where A is a calibration constant, including energetic characteristics of the lidar
system, geometric parameters of the experiment and refractive index of sounding
medium, σ(z, π) is the backscattering coefficient, ε(z) is the extinction coefficient,
and z is the sounding depth.

The time t the photon arrives at the receiver is related to the depth z the
photon penetrates into the medium by the following expression:

t = 2
H + z

c
, (4.2)

where H is the distance from the lidar to the nearest medium border, c is the
speed of light in air.

The expression for the Raman lidar return in the framework of the single
scattering approximation is:

FR(z) = AσR(z, π) exp
(

−
∫ z

0
[ε(z′, λ0) + ε(z′, λR)] dz′

)
, (4.3)

where σR(z, π) is the Raman backscattering coefficient, λ0 is the initial wave-
length, and λR is the Raman shifted wavelength, the initial and shifted wave-
lengths being related as:

λR =
1

1/λ0 − δν̃
, (4.4)
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where δν̃ is a Raman frequency shift, depending on an eigenfrequency of a
molecule.

Unlike high-spectral-resolution lidars (Grund and Eloranta, 1991; Shipley et
al., 1983; Piironen and Eloranta, 1994), Raman lidars have a receiver frequency
band broader than the width of the appropriate Raman line, so all the light that
is Raman scattered at the wavelength λ0 is assumed to shift to the wavelength
λR.

Equation (4.3) is the basic equation used to process Raman sounding data.
The Raman backscattering coefficient σR(z, π) is proportional to the concen-
tration of scattering molecules. Therefore, the Raman lidar return is also pro-
portional to the concentration of molecules, and so measuring the power of the
Raman lidar return enables the estimation of the concentrations. However, such
a straight way is not a very accurate one, because the extinction coefficient re-
mains unknown. For real measurements, other methods are applied. They are
discussed below.

4.2.2 The method of Raman reference signal

The idea of the method is to measure two different Raman signals simultaneously.
In this case, one signal is used to measure concentration, and the other is used
as a reference signal (Ansmann et al., 1992a).

Let a laser pulse propagate into the atmosphere at the wavelength λ0 and let
the receiver fix two Raman scattering signals, one, for example, from atmospheric
nitrogen and the other from water vapour. The powers of these lidar returns are

FH2O = AσH2O
R (z, π) exp

(
−
∫ z

0
[ε(z′, λ0) + ε(z′, λH2O)] dz′

)
, (4.5)

FN2 = AσN2
R (z, π) exp

(
−
∫ z

0
[ε(z′, λ0) + ε(z′, λN2)] dz′

)
. (4.6)

Assuming that wavelengths λH2O and λN2 differ slightly, i.e., the difference of the
extinction coefficients at these wavelengths is negligible: ε(z, λH2O) ≈ ε(z, λN2),
we get for the ratio of these returns:

FH2O

FN2

=
σH2O

R (z, π)
σN2

R (z, π)
. (4.7)

The Raman backscattering coefficient is equal to the product of the Ra-
man backscattering cross-section Q(π) of one molecule by the concentration of
molecules n(z):

σR(z, π) = n(z)Q(π) . (4.8)

So, we get:
FH2O

FN2

=
QH2O(π)
QN2(π)

nH2O(z)
nN2(z)

. (4.9)

Whereas the nitrogen concentration is a stable quantity, in fact, Eq. (4.9) gives a
straightforward way to measure the water vapour concentration profile (mixing



4 Raman lidar remote sensing of geophysical media 129

ratio). The humidity profile could be derived using the well-known formulas if
an additional measurement of a temperature profile is carried out (Mattis et al.,
2002).

4.2.3 The method of measuring an aerosol extinction profile
with a Raman lidar

Raman scattering by nitrogen is also applied to investigation of aerosols (Ans-
mann et al., 1990; Reichardt et al., 1996). In this case, the power of the Raman
lidar return can be written as:

FR(z) = A σN2
R (z, π) exp

(
−
∫ z

0
[ε(z′, λ0) + ε(z′, λR)] dz′

)
, (4.10)

backscattering being due to nitrogen (with a wavelength shift) and extinction
being due to aerosol. If spectral difference of aerosol properties at λ0 and λR is
negligible (it is so, if sounding wavelengths do not match the absorption lines of
aerosols or atmospheric gases), then we get:

ε(z) = −1
2

d
dz

ln

(
F (z)

A σN2
R (z, π)

)
, (4.11)

where σN2
R (z, π) is a known function (e.g., from standard atmospheric models).

This technique has a significant advantage over the elastic scattering tech-
nique, whereas, instead of two variables (the aerosol backscattering and extinc-
tion coefficients), only one variable is unknown, namely, the aerosol extinction
coefficient, which is easily found from Eq. (4.11). The backscattering coefficient
is then found as a ratio of elastic lidar return to Raman one. In this way the
problem uncertainty (lidar ratio) is significantly reduced. However, the appear-
ing drawback is a logarithmic derivative, which in the presence of experimental
errors is a mathematically incorrect procedure and needs regularization.

4.2.4 The Raman DIAL method

Raman DIAL method is analogous to the conventional DIAL method, but, in-
stead of two elastic lidar returns at different wavelengths, one Raman lidar return
is used (Reichardt et al., 1996; Tomasi et al., 2001). This method is generally
used to measure the concentration of gases in atmosphere. Raman scattering
is from nitrogen or oxygen (or both), and the wavelengths are tuned in such a
way that the initial wavelength matches the absorption band of the gas to be
investigated and the shifted wavelength matches the band where the atmosphere
is clear.

Thus, for example, when investigating the ozone profile, the initial wave-
length is set in the near-UV, where ozone absorption is strong, while the shifted
wavelength reaches the visible range, where atmosphere does not absorb sensibly.
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Lidar return is written in the form:

F (z) = A σN2
R (z, π) exp

(
−
∫ z

0
αO3(z′, λ0) dz′ − 2

∫ z

0
σ(z′) dz′

)
, (4.12)

where αO3 is the ozone absorption coefficient:

αO3 = QO3
a (λ0) nO3(z) , (4.13)

where QO3
a is the absorption cross-section of an ozone molecule.

So, the concentration nO3(z) can be easily found:

nO3(z) = − 1
QO3

a (λ0)

{
d
dz

ln
(

F (z)
A σN2(z, π)

)
+ 2σ(z)

}
. (4.14)

Reichardt et al. (1996) claim that the Raman DIAL method is less sensitive
to measurement errors than the conventional DIAL method and, therefore, it
is much more accurate. The Raman DIAL method is even more stable, if one
measures the ratio of Raman signals from two stable components of atmosphere,
namely nitrogen and oxygen.

4.2.5 The method of rotational Raman scattering for determining
the thermodynamic characteristics of atmosphere

The use of the rotational spectrum of Raman scattering as a way of measuring
temperature was apparently suggested first by Cooney (1972). In most cases of
Raman lidar sounding of atmosphere the frequency shift, corresponding to the
main vibrational transition, is used. The energy of vibrational transition is much
greater than the energy of heat motion of molecules. This makes the vibrational
transition signal independent of temperature and, therefore, convenient to use as
a reference. The energy of pure-rotational transition, on the other hand, is of the
same order of the heat motion energy and, therefore, the rotational transition
signal can be used to measure temperature profile (Mattis et al., 2002).

Let, for example, one measure two rotational Raman scattering signals, cor-
responding to the quantum numbers j1 and j2:

F j1
R (z) = AσN2

R (j1, z, π) exp
(

−
∫ z

0
[ε(z′, λ0) + ε(z′, λj1

R )] dz′
)

, (4.15)

F j2
R (z) = AσN2

R (j2, z, π) exp
(

−
∫ z

0
[ε(z′, λ0) + ε(z′, λj2

R )] dz′
)

. (4.16)

Whereas the frequency shift at rotational transition is much less than that at
vibrational transition, in this case the difference between extinction coefficients
at initial and shifted wavelengths can be neglected. So, the ratio of signals (4.15)
and (4.16) gives:

F j1
R (z)

F j2
R (z)

=
σN2

R (j1, z, π)
σN2

R (j2, z, π)
, (4.17)



4 Raman lidar remote sensing of geophysical media 131

where the ratio of scattering coefficients is proportional to the ratio of concen-
trations of molecules, belonging to different energy levels, and is described with
the Boltzmann distribution:

F j1
R (z)

F j2
R (z)

= exp
(

C1

T (z)
+ C2

)
. (4.18)

Constants C1 and C2 are usually found through calibration of lidar data with
that of a radiosonde. The temperature profile is then found from the formula:

T (z) =
C1

ln
(
F j1

R (z)
/
F j2

R (z)
)

− C2

. (4.19)

It is interesting to note that due to negligible frequency shift the method of
rotational Raman scattering is not affected in most cases by multiple scattering.

4.3 The Raman lidar return with regard
to multiple scattering

4.3.1 Problem statement

Let us consider the following problem. The sounding medium is a plane-parallel
turbid layer. A lidar is located at the distance H from the nearest border of a
layer. We use the Cartesian coordinate system with the OZ axis, perpendicular to
the border and directed into the medium. The two-dimensional vector r describes
the coordinates in the plane (x, y). The two-dimensional vector n is a projection
of a unit vector, pointing the direction of light propagation, onto the plane (x, y).
The lidar is situated at the point (−H, 0, 0). The spatial-angular distribution of
the source radiance and the diagram of the receiver sensitivity are given by
functions ϕsrc(r,n) and ϕrec(r,n), which are normalized as following:

∫
ϕsrc(r,n) drdn = 1 , (4.20)

∫
ϕrec(r,n) drdn =SrecΩrec , (4.21)

where Srec and Ωrec are the area and the solid angle of the receiver, respectively.
The scattering medium is characterized by the extinction coefficient ε(λ, z),

the elastic scattering coefficient σ(λ, z), the elastic scattering phase function
P (λ, θ), the Raman scattering coefficient σR (total), and the Raman scattering
phase function PR(θ). Phase functions are normalized as:

1
2

∫ π

0
P (θ) sin θ dθ = 1 . (4.22)

The initial wavelength is λ0, the Raman shifted wavelength is λR that is defined
by Eq. (4.4).
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4.3.2 General solution

The model of small-angle quasi-single scattering, which accounts for multiple
forward scattering and single backward scattering, has been successfully used to
describe multiple scattering in elastic lidar sounding (Katsev et al., 1997; Zege et
al., 1995). This approach is bound up with the fact that phase functions of real
geophysical media, such as clouds, aerosols, and seawater, are strongly peaked in
the forward direction. As a result, the angular spectrum of scattered light from
a laser source is peaked in the forward direction too. This means that in most
of the problems of lidar sounding one can consider just the only one event of
scattering to large angles. According to this approximation, the expression for
the lidar return has a form (Katsev et al., 1997):

F (z) = W0
σ(λ, z)

4π

∫
drdn′ dn′′ Isrc(z, r,n′)P (z, π − |n′ − n′′|)Irec(z, r,n′′) ,

(4.23)

where W0 is a laser pulse energy, Isrc(z, r,n) and Irec(z, r,n) are the angular dis-
tributions of the radiance at the point (z, r), due to the real and fictitious contin-
uous wave sources of unit power with the spatial-angular diagrams ϕsrc(r,n) and
ϕrec(r,n), respectively. Functions Isrc(z, r,n) and Irec(z, r,n) satisfy the radia-
tive transfer equation and can be found within the small-angle approximation.

A real lidar records temporal dependencies of the lidar return power F (t),
t being the photon arrival time. This approach neglects the temporal spread of
small-angle photons and associates the photon arrival time t with the depth z,
which the photons return from, by Eq. (4.2). As a matter of fact, the forward
pulse stretching can violate the relation (4.2) and affect the lidar return (McLean
et al., 1998). However, both theoretical estimations and computer simulations
show that this feature has to be regarded only for sounding layers of large optical
thicknesses (Zege et al., 2001).

In order to find the Raman lidar return under strong influence of multiple
scattering, we should note first that the Raman scattering coefficient is several
orders less than the elastic scattering coefficient, for example, for clouds, their
ratio is about 10−6 or even less (Reichardt et al., 1996). This means that only
one Raman scattering event is enough to account for. On the contrary, the elastic
scattering should be considered as multiple one.

By the manner of forming light field, elastic scattering can be divided into
small-angle scattering and backward (large-angle) scattering. According to Kat-
sev et al. (1997), because of the forward peak of elastic scattering, backscattering
can be considered just once in lidar sounding. Hence, multiple scattering appears
in small-angle elastic scattering only.

Having separated in such a way the process of forming light field into forward
elastic multiple scattering (FES), backward elastic scattering (BES), forward Ra-
man scattering (FRS), and backward Raman scattering (BRS), and considering
just one event of Raman and one event of backward elastic scattering, we arrive
at the conclusion that the Raman lidar return could be formed by the following
processes:
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1. FES – BRS – FES,
2. FES – FRS – FES – BES – FES,
3. FES – BES – FES – FRS – FES.

The second and the third processes are obviously equivalent, so we will merge
them into one process: forward Raman – backward elastic (FRS – BES). The first
process is principally different: it includes the Raman backscattering event and
there is no elastic backscattering in it. As it happens, the FRS – BES process can
be neglected comparing to the first process (BRS). Let us display it, using the
double-scattering pattern. The relative contribution of double-scattering F (2)(z),
as compared with the single scattering F (1)(z), in the case of a homogeneous
medium equals (Cohen et al., 1978; Eloranta, 1972; Samokhvalov, 1979):

F (2)(z)
F (1)(z)

=
σ(λ) (z + H)

P (π)
γrec

∫ π/2

0
P (γ)P (π − γ) dγ , (4.24)

where γrec is the receiver field-of-view (FOV).
Here we imply that the source is a mono-directional one and FOV is small

enough:
z + H

z
γrec � 1 . (4.25)

Noting that in our case double scattering consists of one elastic and one
Raman scattering event, we get:

F (el,R)(z)
F (R)(z)

=
(z + H)
PR(π)

γrec

(
σ(λR, z)

∫ π/2

0
PR(γ)P (π − γ) dγ

+ σ(λ0, z)
∫ π/2

0
P (γ)PR(π − γ) dγ

)
. (4.26)

The first term in parentheses describes the FRS – BES process, and the
second one describes the BRS process. The ratio of these two terms illustrates
the contribution of the FRS – BES process, in comparison with the BRS process.
This ratio can be estimated as a ratio of elastic phase function integral over
backward hemisphere to that over forward hemisphere:

∫ π

π/2
P (γ) dγ

/∫ π/2

0
P (γ) dγ .

This ratio is negligible for real geophysical media, because of the forward scat-
tering peak. It is about 10−3 for the Cloud C.1 model (Deirmendjian, 1969) in
the visible range.

So, the process FES – BRS – FES is the main contribution to light field
forming. Or, if we decode it, light field forming goes the following way (see
Fig. 4.1):
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cloud 

BRS FES 

Fig. 4.1. The scheme of forming the Raman lidar return.

1. elastic small-angle multiple scattering, when photons travel out of the lidar
into the medium,

2. the single event of Raman scattering in the backward direction,
3. elastic (but at the shifted wavelength) small-angle multiple scattering, when

photons travel from the medium back to the lidar.

This scheme is a complete paradigm of the model (4.23) for elastic lidar sounding.
Thus the model (4.23) can be easily generalized to the case of Raman lidar

sounding. To do so, one should

– replace the elastic scattering coefficient σ(λ, z), followed by the integral, by
the Raman scattering coefficient σR(z),

– substitute the Raman scattering phase function PR(π − θ) for the elastic
backscattering phase function P (π − θ),

– use medium characteristics at wavelengths λ0 and λR, while calculating func-
tions Isrc(z, r,n) and Irec(z, r,n), respectively.

Finally we get the expression for the Raman lidar return:

FR(z) = W0
σR(z)

4π

∫
drdn′ dn′′ Isrc(λ0, z, r,n′)PR(π−|n′−n′′|)Irec(λR, z, r,n′′) .

(4.27)

This expression can be rewritten more compactly by introducing the effective
light field radiance:

Ieff(z, r,n) =
∫

dr′ dn′ Isrc(λ0, z, r′,n′)Irec(λR, z, r + r′,n + n′) . (4.28)

Then Eq. (4.27) can be presented as:

FR(z) = W0
σR(z)

4π

∫
dnPR(π − |n|)Ieff(z, r = 0,n) . (4.29)

This expression is more compact and demonstrative. However we need to figure
out the physical meaning of the effective radiance Ieff .
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To do so, let us introduce the Fourier transform of the function Ieff and the
Hankel transform of the Raman backscattering function PR(π − θ):

Ieff(z,ν,p) =
∫

drdn Ieff(z, r,n) exp(−iν · r − ip · n) , (4.30)

PR(p) =
1
2

∫ ∞

0
PR(π − θ) J0(p θ) θ dθ , (4.31)

where Jk(x) is the Bessel function of the kth order.
(Here, as always in the small-angle approximation, we assume that backscat-

tering phase function PR(π − θ) is equal to zero for θ, which is greater than the
prescribed value of the scattering angle θ0. We choose θ0 = π/2.)

According to the Parseval equality, we have:

FR(z) = W0σR(z)
∫

dν dp
(2π)4

PR(p)Ieff(z,ν,p) , (4.32)

where
Ieff(z,ν,p) = I∗

src(λ0, z,ν,p) Irec(λR, z,ν,p) . (4.33)

Here Isrc(λ0, z,ν,p) and Irec(λR, z,ν,p) are the Fourier transforms of the func-
tions Isrc(λ0, z, r,n) and Irec(λR, z, r,n), respectively (sign * represents complex
conjugation).

Within the small-angle approximation, the Fourier transform of light radi-
ance, generated by the source with the diagram ϕ(r,n) in a scattering medium,
is equal to (Zege et al., 1991):

I(z,ν,p) = ϕ(ν,p+ν (z +H)) exp
(

−
∫ z

0

[
ε(ξ) − σ(ξ)P f (|p + ν(z − ξ)|)] dξ

)

(4.34)

where ϕ(ν,p) is the Fourier transform of the source diagram, and P f (p) is the
Hankel transform of the forward scattering phase function:

P f (p) =
1
2

∫ ∞

0
P f (θ) J0(p θ) θ dθ (4.35)

Substitution of (4.33) and (4.34) into Eq. (4.32) gives:

FR(z) = W0σR

∫
dν dp
(2π)4

PR(p)ϕeff(ν,p + ν (z + H))

× exp
(

−
∫ z

0

[
εeff(ξ) − σeff(ξ)P f

eff(|p + ν(z − ξ)|)
]

dξ

)
, (4.36)

where
ϕeff(ν,p) = ϕ∗

src(ν,p)ϕrec(ν,p) , (4.37)
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εeff(z) = ε(λ0, z) + ε(λR, z) , (4.38)

σeff(z) = σ(λ0, z) + σ(λR, z) , (4.39)

P f
eff(z, θ) =

σ(λ0, z)P f (λ0, z, θ) + σ(λR, z)P f (λR, z, θ)
σ(λ0, z) + σ(λR, z)

. (4.40)

So, as seen from (4.36), the effective intensity Ieff is the light field radiance,
produced by the effective source with the diagram

ϕeff(r,n) =
∫

dr′ dn′ϕsrc(r′,n′)ϕrec(r′ + r,n′ + n) (4.41)

in some effective medium with the extinction coefficient, the scattering coeffi-
cient, and the forward scattering phase function, defined by Eqs (4.38)–(4.40),
respectively.

Formulas (4.36)–(4.41) are the solution of the direct problem of the Raman
lidar return simulation within the framework of small-angle approximation. It is
to be noted that, unlike other approaches (such as Monte–Carlo (Bruscaglioni
et al., 1999) or Shipley (Weinman and Shipley, 1972) methods), this solution
explicitly relates the Raman lidar return to the medium optical characteristics
and the lidar parameters. This relation is of great importance while solving the
inverse problem. Moreover, this approach makes it possible to obtain the solution
for the Raman lidar return in the same form as it is for the elastic lidar return.
This plays an important role while developing the methods of joint use of the
elastic and Raman scattering signals.

4.3.3 Isotropic backscattering approximation

Equation (4.29) can be simplified if one takes into account that the functions in
the integrand behave in strongly different ways. Radiance Ieff(z, r = 0,n) has a
sharp peak in the direction n = 0 and is negligible at large angles. In contrast,
the Raman phase function is the Rayleigh function (Mobley et al., 1993):

PR(θ) =
3
4

1 + 3w

1 + 2w

(
1 +

1 − w

1 + 3w
cos2 θ

)
, (4.42)

where w is a depolarization ratio.
The phase function (4.42) is smooth in a neighbourhood of the point θ = π

and, therefore, it can be replaced by a constant:

PR(π − θ) ≈ PR(π) . (4.43)

In order to estimate the error of this ‘isotropic’ approximation, let us expand
the Rayleigh function into series at the point θ = π:

PR(π − θ) ≈ PR(π)
(

1 − 1 − w

1 + w

θ2

2

)
. (4.44)
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The relative error δ of changing the function to the isotropic one can be estimated
as:

δ =
1 − w

1 + w

∫
dn

n2

2
Ieff(z, r = 0,n)∫

dn Ieff(z, r = 0,n)
.

The ratio of the integrals in this expression is nothing but the variance Vθ of the
angular distribution, described by the function Ieff(z, r = 0,n):

Vθ =

∫
dn

n2

2
Ieff(z, r = 0,n)∫

dn Ieff(z, r = 0,n)
. (4.45)

Hence, the relative error of isotropic approximation is equal to

δ =
1 − w

1 + w
Vθ .

Therefore, the isotropic backscattering approximation can be used if

1 − w

1 + w
Vθ � 1 . (4.46)

Let us note that the isotropic approximation requires no restrictions in addition
to the small-angle approximation validity condition, which is (Zege et al., 1991):

Vθ � 1 . (4.47)

Computer simulations show that the error of the isotropic approximation is less
then 0.03% for a typical geometry of Raman lidar measurements.

So, the expression for the Raman lidar return (4.29) takes the form:

FR(z) = W0σR(π)
∫

dn Ieff(z, r = 0,n) , (4.48)

where σR(π) is the Raman backscattering coefficient, related to the total Raman
scattering coefficient σR as following:

σR(π) =
σRPR(π)

4π
. (4.49)

It follows in the Fourier space:

FR(z) = W0σR(π)
∫

dν

(2π)2
Ieff(z,ν,p = 0) . (4.50)

The isotropic approximation results in a strong simplification of expression
for the Raman lidar return. The four-dimensional integral in Eq. (4.32) is reduced
to the two-dimensional integral in Eq. (4.50), that is of great importance in
numeric simulations. Furthermore, the expression (4.48) has a clear physical
meaning: the Raman lidar return is proportional to the irradiance on the axis of
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the effective light beam in the effective medium with characteristics defined by
Eqs (4.38)–(4.40).

So, the problem of the Raman lidar return calculation is reduced to a stan-
dard problem of finding the irradiance in a medium with a peaked phase function.
A wide range of known small-angle scattering methods could be applied to the
solution of this problem (Zege et al., 1991).

4.3.4 The case of axially symmetric source and receiver patterns

A particular case when both source and receiver diagrams have axially symmetric
angular-spatial patterns, which can be represented as

ϕj(r,n) = ϕsp
j (|r − r0

j |)ϕang
j (|n − n0

j |) , j = scr, rec , (4.51)

is of a great practical interest. In this case, the Fourier transform of the effective
source diagram takes the form:

ϕeff(ν,p) = ϕsp
scr(ν) ϕang

scr (p) ϕsp
rec(ν) ϕang

rec (p) exp(−iν · R − ip · Ω) , (4.52)

where R = r0
rec − r0

scr is the vector, connecting the source and receiver centres,
Ω = n0

rec − n0
scr is the vector, determining the angle between the receiver and

source axes. Besides, it follows:

ϕang
j (p) = 2π

∫ ∞

0
ϕang

j (θ) J0(pθ)θ dθ ,

ϕsp
j (ν) = 2π

∫ ∞

0
ϕsp

j (r) J0(νr)r dr ; j = scr, rec. (4.53)

Equation (4.52) makes possible the simplification of the expression (4.50)
by integrating over the azimuth and reducing the integral (4.50) to the one-
dimensional integral:

FR(z) = W0σR(π)
∫

ν dν

2π
J0(ν|R + (z + H)Ω|)Ieff(z, ν,p = 0) . (4.54)

Here, the Fourier transform of the effective intensity is:

Ieff(z, ν,p = 0)=ϕ′(ν, ν(z+H)) exp
(

−
∫ z

0

[
εeff(ξ) − σeff(ξ)P f

eff(ν(z − ξ))
]

dξ

)

(4.55)
and

ϕ′(ν, p) = ϕsp
scr(ν) ϕang

scr (p) ϕsp
rec(ν) ϕang

rec (p) . (4.56)

Equations (4.51)–(4.56), along with the effective medium properties (4.38)–
(4.40), give the explicit solution to the problem for the case of axially symmetric
source and receiver patterns.

Figure 4.2 presents the Raman lidar return simulation example in comparison
with the data of Wandinger (1998).
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Fig. 4.2. The total signal (a) and the multiple-to-single scattering ratio (b). Data
by Wandinger (1998) (◦) and the solution (4.54) (curve). The cloud C.1 model (Deir-
mendjian, 1969) with an extinction coefficient of 0.01 m−1. The lidar -cloud distance is
5000 m, the source divergence is 0.1 mrad, the receiver’s FOV is 0.4 mrad (full angles).
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4.4 Spatial-angular pattern of the Raman lidar return

4.4.1 Introduction to the problem

The Raman lidar return is usually used in the sounding of aerosols to mea-
sure the extinction coefficient profile, because within the framework of the single
scattering approximation the Raman lidar return depends on the extinction co-
efficient alone. Owing to the spectral dependence of the extinction coefficient,
the microstructure characteristics of a medium (e.g., sizes of particles) can be
retrieved. However, for the sounding of clouds, consisting of large particles, the
spectral behaviour of the extinction coefficient contains no information about
microstructure parameters. On the other hand, when sounding clouds, the effect
of multiple scattering becomes significant, and lidar return depends not only on
the extinction, but also on the phase function, which, in its turn, depends on
the size of the scatterers.

Multiple scattering becomes crucial when measuring angular patterns of li-
dar return (e.g., with a multiple-field-of-view (Bissonnette and Hutt, 1990) or
imaging (Muscari et al., 1996) receiver). In that case the signal at some angles
is exclusively determined by multiple scattering.

Bissonnette and Hutt (1990) and Roy et al. (1997) apparently were the first to
suggest using a multiple-field-of-view (MFOV) receiver to determine the effective
particle size using elastic lidar sounding of warm clouds and aerosols. However,
the absence of the appropriate theoretical base made them use the semi-empirical
methods in the retrieval procedure. The theoretical investigation of an angular
pattern of the elastic lidar return from warm clouds is given by Polonsky et al.
(2001). This investigation shows that for sounding depths, at which the scattering
is mainly determined by Fraunhofer diffraction on water droplets, the angular
dependence of the lidar return appears as a product of the receiving angle by the
effective droplet size. Such an angular dependence enables the retrieval of cloud
droplet sizes. However, the complex behaviour of the elastic backscattering phase
function hinders the implementation of such methods (e.g., accounting for finite
size of the receiver, which is necessary when investigating the spatial-angular
pattern of lidar return). In fact, isotropic backscattering simplifies the problem
greatly for the case of Raman lidar sounding.

Basing on the developed model, the investigation of spatial-angular pattern
of the Raman lidar return is carried out in this chapter. Further, on its basis, a
new optical particle sizing technique is proposed.

4.4.2 The effective medium properties

In order to investigate the spatial-angular pattern of the Raman lidar return,
let us examine first the properties of the effective medium introduced above.
We consider optically hard scatterers of sizes much larger than the wavelength.
Warm (liquid) clouds could be a paradigm of such a medium. Further, we con-
sider sounding depths that are not very large. These two premises allow us to
regard scattering as Fraunhofer diffraction of light on water droplets. Within
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the framework of the Fraunhofer diffraction approximation the scattering cross-
section and, therefore, the scattering coefficient σD do not depend on wavelength:

σD(λ0, z) = σD(λR, z) = σD(z) . (4.57)

So the effective phase function (4.40) is:

PD
eff(θ) =

PD(λ0, θ) + PD(λR, θ)
2

, (4.58)

where PD(λ, θ) is the Fraunhofer phase function (van de Hulst, 1957):

PD(λ, θ) =
1

〈r2〉
〈

r2 4
θ2 J2

1

(
2πr

λ
θ

)〉
, (4.59)

where r is a droplet radius (angle brackets denote size averaging).
As was shown by Kokhanovsky and Zege (1997), the phase function of clouds

does not really depend on the exact form of the size distribution function, but
rather on the value of the effective diffraction parameter (the dimensionless
droplets size) ρ32 defined as:

ρ32 =
2πr32

λ
, (4.60)

where r32 is the effective droplets radius:

r32 =

〈
r3
〉

〈r2〉 (4.61)

and λ is the wavelength of the incident light.
As a result, whereas the angular dependence in Fraunhofer diffraction appears

as a product ρθ, ρ = 2πa/λ being the dimensionless radius of scatterers, the
diffraction phase function should have the form:

PD(θ) = ρ2
32Φ(ρ32θ) , (4.62)

where the function Φ(x) satisfies the normalizing condition, which is the small-
angle analogue of Eq. (4.22):

1
2

∫ ∞

0
Φ(x)xdx = 1 . (4.63)

According to the developed model, the light propagates into the medium at the
initial wavelength and travels back to the lidar receiver at the shifted wavelength.
Hence, with application to Raman lidar sounding, we can introduce the effective
dimensionless radius:

ρeff =
1
2

(ρ32(λ0) + ρ32(λR)) =
πr32

λ0
+

πr32

λR
, (4.64)

and, thereafter, the effective wavelength λeff :
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2
λeff

=
1
λ0

+
1

λR
. (4.65)

Then it follows:
ρeff =

2πr32

λeff
. (4.66)

Taking into account that λR is related to λ0 and δν̃ through Eq. (4.4), let us
express the initial and shifted wavelengths through λeff :

λ0,R =
λeff

1 ± λeffδν̃/2
. (4.67)

As could be easily shown by differentiation with respect to parameter ρ32, the
phase function value at the point θ = 0, in the case of a fairly wide size distribu-
tion, is most sensitive to the size of scatterers, and, therefore, to the wavelength.
It follows from Eq. (4.59) that:

PD(λ, θ = 0) =
4π2

λ2

〈
r4
〉

〈r2〉 (4.68)

and one can derive at θ = 0 (see Eq. (4.58)):

PD(λ0, 0) + PD(λR, 0)
2

= 2π2

〈
r4
〉

〈r2〉
(

1
λ2

0
+

1
λ2

R

)

= 2π2

〈
r4
〉

〈r2〉
(

(1 + λeffδν̃/2)2

λ2
eff

+
(1 − λeffδν̃/2)2

λ2
eff

)

=
4π2

λ2
eff

〈
r4
〉

〈r2〉

(
1 +

(
λeffδν̃

2

)2
)

= PD(λeff , 0)

(
1 +

(
λeffδν̃

2

)2
)

. (4.69)

That is, the half-sum of the Fraunhofer phase functions at θ = 0 equals the
Fraunhofer phase function at the effective wavelength within accuracy to the
second order of the value λeffδν̃. If the initial wavelength is 532 nm and Raman
scattering is from nitrogen, the shifted wavelength will be 607 nm and the effec-
tive one will be 567 nm. In this case the correction will be less than 1%. (For
Raman lidar sounding the shorter wavelengths are often used. In that case the
correction is even smaller, for example, for the initial wavelength of 308 nm it
is about 0.1%.) Whereas the phase function value at θ = 0 is most sensitive to
the wavelength, the effective phase function (4.58) can be changed by the phase
function at the effective wavelength for any θ with a correction less than the
correction for θ = 0. Finally, we get:

PD
eff(θ) = PD(λeff , θ) = ρ2

effΦ(ρeffθ) . (4.70)

Thus, the effective forward scattering phase function depends on the effective
dimensionless radius only.
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It should be noted that the effective dimensionless radius and, therefore, the
phase function can generally depend on the sounding depth z. However, in order
to simplify the problem, we will consider here the case when ρeff does not depend
on z, otherwise, the effective particle size will stand for some average value over
the interval (0, z).

4.4.3 Spatial-angular patterns of Raman lidar returns
and their dependence on the size of scatterers

Now, after investigating the angular pattern of the effective medium phase func-
tion, let us consider the pattern of a lidar return.

Let a source be infinitesimal and mono-directional, i.e., its diagram is:

ϕsrc(r′,n′) = δ(r′)δ(n′) , (4.71)

where δ(x) is the two-dimensional Dirac δ-function.
Let us investigate the spatial-angular distribution of returned radiance in the

lidar plane (z = −H). This means that the ‘receiver’ has a diagram:

ϕrec(r′,n′) = δ(r′ − r)δ(n′ − n) , (4.72)

and its Fourier transform is equal to:

ϕrec(ν,p) = exp(−iν · r − ip · n) . (4.73)

Then, the diagram of the effective source (4.41) is identical to the diagram
(4.72) and its Fourier transform is given by (4.73). The Raman lidar return,
according to Eq. (4.48), is proportional to the irradiance, produced by this source
in the effective medium at the point (z, 0, 0). Substituting (4.70) and (4.73) into
(4.48) and keeping in mind that the scattering coefficient does not depend on
wavelength, we get, after integrating over the azimuth:

F (z, r,n) = W0σR(π)
∫

νdν

2π
J0 (ν|r + n (z + H)|)

× exp
(

−
∫ z

0

[
εeff(ξ) − 2σD(ξ)PD

eff (ν(z − ξ))
]

dξ

)
. (4.74)

Here PD
eff(p) is the Hankel transform of the diffraction phase function PD

eff(θ):

PD
eff(p) =

1
2

∫ ∞

0
ρ2
effΦ(ρeffθ) J0(p θ) θ dθ

=
1
2

∫ ∞

0
Φ(x) J0

(
x

p

ρeff

)
xdx = χ(p/ρeff) , (4.75)

where χ(p) is the Hankel transform of the function Φ(x).
Substituting (4.75) into (4.74) and changing variables in integration

ν → ρeffν ,
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we come to the expression

F (z, r,n) = W0σR(π)ρ2
eff

∫
ν dν

2π
J0 (ρeffν|r + n (z + H)|)

× exp
(

−
∫ z

0

[
εeff(ξ) − 2σD(ξ)χ(ν(z − ξ))

]
dξ

)
, (4.76)

in which spatial and angular coordinates appear as a combination ρeff |r + (z +
H)n| only:

F (z, r,n) = ρ2
efff (ρeff |r + (z + H)n|) . (4.77)

If the receiver size is negligible, its spatial diagram is:

ϕrec(r) = Srecδ(r) . (4.78)

In that case one can put r = 0 in Eq. (4.77) and find that the lidar return does
not depend on the azimuth, but only on the product of ρeff by the receiving
angle θ:

F (z, θ) = ρ2
efff ((z + H)ρeffθ) . (4.79)

To illustrate the accuracy of Eq. (4.79) we simulated the angular distribution
of the Raman lidar return on the basis of the initial expression (4.54) without
additional approximations. The phase functions were calculated with Mie theory
for warm clouds with droplets size distribution of Cloud C.1 type (Deirmendjian,
1969) with different effective radii r32:

dω

dr
=

rm

m!

(
r32

m + 3

)−m−1

exp
(

−r (m + 3)
r32

)
, (4.80)

where r is the droplet radius, dω is the probability that the droplet radius lies
in the interval from r to r + dr, m is a Gamma-distribution parameter (here
m = 6).

The dependence of the ratio F (z, θ)/ρ2
eff on the product ρeffθ is plotted in

Fig. 4.3. The initial wavelength is 532 nm, the shifted one is 607 nm (the effective
one is 567 nm). The cloud altitude is 1000 m, the receiver radius is 25 cm, and the
pulse energy is 1 J. It is seen that, regardless of great difference in properties of
media under consideration (the effective radius varies all over the range usually
observed in warm clouds), the value F (z, θ)/ρ2

eff depends on the product ρeffθ
only, in close agreement with Eq. (4.79). The discrepancy in the range of small
angles is due to the singly scattered light, for which the approximation (4.78) is
inapplicable.
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eff vs. the product ρeffθ for clouds with the different effective

size of droplets.
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4.5 Retrieval of the microphysical properties
of light scattering media using measurements
of the Raman lidar return angular patterns

4.5.1 The retrieval possibilities

Equation (4.79) makes it possible to determinate the sizes of scatterers using
measurements of the Raman lidar return at several angular intervals. Indeed,
integrating (4.76) over the spatial coordinate from 0 to R and over the angle
from 0 to γ, we get:

F (γ) = W0σR(π)
R γ

z + H

∫
2π dν

ν
J1 (ρeffR ν) J1 (ρeff(z + H)γ ν)

× exp
(

−
∫ z

0

[
εeff(ξ) − 2σD(ξ)χ(ν(z − ξ))

]
dξ

)
, (4.81)

where F (γ) denotes the light flux, measured with the receiver of radius R at the
angle interval from 0 to γ:

F (γ) =
∫ γ

0
θ dθ

∫ 2π

0
dφang

∫ R

0
r dr

∫ 2π

0
dφspF (z, r,n) , (4.82)

where φang, sp is the azimuthal angle for angular and spatial coordinates, respec-
tively.

According to Eq. (4.81), FOV γ, the receiver radius R, and the effective
dimensionless radius ρeff appear in this expression only as a combination:

F (γ) = R γf (ρeffR, ρeffγ) . (4.83)

Then the ratio of the flux F1, measured in the interval (γ0, γ1), to the flux F0,
measured in the interval (0, γ0) depends on the two cloud characteristics only:
ρeff and the scattering coefficient σD:

F1

F0
=

F (γ1) − F (γ0)
F (γ0)

=
γ1 f (ρeffR, ρeffγ1)
γ0 f (ρeffR, ρeffγ0)

− 1 . (4.84)

All other quantities are known values defined by the experiment geometry.
In that case, if the scattering coefficient is known from some other measure-

ments, e.g., through the depth dependence of a lidar return, then the ratio of
fluxes ς = F1/F0 is a function of the single variable ρeff , which can be easily
retrieved by measuring the value of ς.

The dependence of multiply scattered signal on ρeff is strongest at small
angles: the smaller the angle θ, the stronger the dependence. However, at θ <
R/(z + H) the significant portion of the measured signal is the singly scattered
light, which contains no information about ρeff . Therefore, the largest amount
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of information will be carried by a signal measured with an annular receiver at
the angular range (γ0, γ1) satisfying the conditions:

γ1 > γ0 >
R

z + H
, (4.85)

γ1
z + H

R
− 1 < 1 . (4.86)

Figure 4.4 presents an example of the dependence of F1/F0 on the effective
radius of cloud droplets r32 for clouds with the particle size distribution (4.80).
The calculations were carried out using Eq. (4.54) with no additional approx-
imations. It is evident from Fig. 4.4 that the ratio F1/F0 is quite sensitive to
the radius of particles, and this sensitivity increases with sounding depth. As it
follows from the results presented in the plot, the relative error of retrieving r32
has the same order of magnitude as the relative error of measuring the flux ratio
F1/F0.

4.5.2 Use of double scattering for retrieving
the volume concentration of scatterers

The double-scattering approximation was used by many authors to simulate lidar
return (see, for example, Eloranta, 1972; Samokhvalov, 1979). We will consider
its small-angle modification and show that for the range of its validity (small
FOVs and not very large optical depths), it can be used to retrieve information
about a light scattering medium without the use of additional a priori data.
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Let us consider a homogeneous cloud. In this case the expression for the flux
(4.81) takes the form:

F (γ) = W0σR(π)
R γ

z + H

∫
2π dν

ν
J1 (ρeffR ν) J1 (ρeff(z + H)γ ν)

× exp
(

−2τ + 2σD

∫ z

0
χ(νξ) dξ

)
, (4.87)

where τ is the optical depth defined as:

τ =
εeffz

2
. (4.88)

Passing to the dimensionless variables p and η and making the change in
Eq. (4.87):

ν =
p

z
, ξ =

z

p
η , (4.89)

we get:

F (γ) = W0σR(π)
R γ

z + H

∫
2π dp

p
J1

(
ρeff

R

z
p

)
J1

(
ρeff

z + H

z
γp

)

× exp
(

−2τ + 2
σDz

p

∫ p

0
χ(η) dη

)
. (4.90)

The double-scattering approximation in the Raman case means that one
event of Raman and one event of elastic scattering are taken into account, i.e.,
one should take the term of the first order of σDz in Eq. (4.90):

F (γ) = W0σR(π)
R γ

z + H

∫
2π dp

p
J1

(
ρeff

R

z
p

)
J1

(
ρeff

z + H

z
γp

)

×e−2τ

(
1 + 2

σDz

p

∫ p

0
χ(η) dη

)
. (4.91)

The unity in the parentheses corresponds to single scattering and the second term
corresponds to double scattering, with one forward elastic and one backward
Raman scattering event.

The integral (4.91) can be calculated approximately at

ρeff
z + H

z
γ � 1 . (4.92)

This corresponds to the light field close to the light source. In that case the
integral (4.91) is defined by the asymptotic behaviour of the function to be
integrated at p � 1, and the upper limit can be put equal to infinity. This
integral can be calculated exactly. To do so, we use Eq. (4.75), according to
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which the function χ(η) is the Hankel transform of the function Φ(x). Then, it
follows:∫ p

0
χ(η) dη ≈

∫ ∞

0
χ(η) dη =

1
2

∫ ∞

0
Φ(x) dx =

1
2ρeff

∫ ∞

0
PD

eff(θ) dθ

=
1

2ρeff

16
3π

2π

λeff

〈
r3
〉

〈r2〉 =
1

2ρeff

16
3π

ρeff =
8
3π

(4.93)

(when integrating over θ, Eqs (4.59) and (4.70) and also the Parseval equality
have been used).

Substituting (4.93) into (4.91), we get:

F (γ) = W0σR(π)
R γ

z + H

×
∫

2π dp

p
J1

(
ρeff

R

z
p

)
J1

(
ρeff

z + H

z
γp

)
e−2τ

(
1 +

16
3π

σDz

p

)
.

(4.94)

Using conditions (4.85), (4.86), and (4.92), and taking the first order of the value
γ(z + H)/R − 1, we get an approximate expression:

F (γ) = W0σR(π) e−2τ πR2

(z + H)2

(
1 +

64 σDρeff

3π2 ((z + H)γ − R/3)
)

. (4.95)

If the first receiver (circular) measures the signal F0 in the interval from 0 to
γ0 and the second receiver (annular) measures the signal F1 in the interval from
γ0 to γ1, then the ratio F1/F0 is equal to:

F1

F0
=

(z + H) (γ1 − γ0)
3π2

64 σDρeff
+ (z + H)γ0 − R/3

. (4.96)

From this equation the product σD by ρeff can be easily retrieved:

σDρeff =
3π2

64
F1/F0

c1 − c2 F1/F0
, (4.97)

where the coefficients c1 and c2 are equal to:

c1 = (z + H) (γ1 − γ0),
c2 = (z + H)γ0 − R/3.

(4.98)

Within the approximation of Fraunhofer diffraction, the scattering cross-
section equals the cross-sectional area of a scattering particle. Therefore, the
scattering coefficient is:

σD =
〈
πr2〉CN =

〈
πr2〉 CV

〈4πr3/3〉 =
3
4

CV

r32
, (4.99)

where CN is the numeric particle concentration and CV is the volume particle
concentration.
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It should be noted that the diffraction scattering coefficient σD used here is
approximately twice less than the total Mie scattering coefficient.

For the product of σD by ρeff , we get:

σD ρeff =
3
4

CV

r32

2πr32

λeff
=

3π

2
CV

λeff
. (4.100)

This means that through the ratio F1/F0 one can retrieve the volume con-
centration of droplets using the following simple formula:

CV = λeff
π

32
F1/F0

c1 − c2 F1/F0
. (4.101)

Table 4.1 represents an example of such a retrieval. The five types of clouds
with the droplets distribution (4.80) and different effective sizes were used
for modelling. The scattering coefficient for all the cloud types was taken of
0.01 m−1, the sounding depth is 100 m. The retrieved and true volume concen-
trations (and the relative error of retrieval, as well) are shown in Table 4.1. As
can be seen, the retrieval error is not greater than 20%, but it increases with
sounding depth, when the double-scattering approximation becomes invalid. The
applicability of the formula (4.101) is bounded by small optical depths (about
unity), as well as by the conditions (4.86) and (4.92) imposed on the geometry
of an experiment. However, the use of formula (4.101) requires no additional
knowledge about the properties of the medium and it can be used as a reference
point in other algorithms.

Table 4.1. Example of the droplets volume concentration retrieval from Eq. (4.97)

Effective True Retrieved Relative error (%)
radius (µm) concentration (ppm) concentration (ppm)

4 0.02462 0.02924 18.7
6 0.03764 0.04177 11.0
8 0.05072 0.05324 5.0

10 0.06383 0.06350 −0.5
12 0.07698 0.07256 −5.7

4.5.3 The algorithm of simultaneous retrieval
of the scattering coefficient and the effective droplet size

Within the single scattering approximation, the scattering coefficient can be
found through the logarithmic derivative:

ε0(z) = −1
2

d
dz

ln
[
FR(z) (z + H)2

]
, (4.102)

However, if the single scattering albedo and the phase function are known, the
scattering coefficient can also be found in the case of significant influence of
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multiple scattering. It can be done within the following iterative scheme: the
starting scattering profile is found through Eq. (4.102), then the contribution of
multiple scattering is found and the scattering profile is corrected with regard
to multiple scattering. The formula for this iterative scheme is:

εk+1(z) = εk(z) − 1
2

d
dz

ln
[

FR(z)
FR (εk(z))

]
, (4.103)

where FR(z) denotes the measured signal and FR

(
εk(z)

)
denotes the signal,

calculated with account for multiple scattering with the extinction profile εk(z)
(the extinction coefficient is equal to the scattering coefficient for clouds in the
visible range).

Therefore, Raman lidar sounding of warm clouds with an MFOV receiver
makes possible the simultaneous retrieval of both the extinction coefficient profile
and the effective size of droplets.

Let us consider the abovementioned measurement scheme. As was shown, if
the scattering profile is known (the single scattering albedo for clouds is equal
to unity in the visible), one can easily retrieve the effective radius of droplets
through the ratio of two signals, the first being determined mainly by single scat-
tering (F0) and the second being determined exclusively by multiple scattering
(F1). This means that the extinction profile retrieval should be the first step. It
can be done within the single scattering approximation, using the signal F0:

ε0(z) = −1
2

d
dz

ln
[
F0(z) (z + H)2

]
. (4.104)

Then, using the ratio F1/F0, the effective radius of droplets is retrieved. If the
retrieval accuracy is insufficient, knowing the particles size (i.e., the phase func-
tion), one can correct the extinction profile with regard to multiple scattering:

εk+1(z) = εk(z) − 1
2

d
dz

ln

[
F0(z)

F0
(
εk(z), rk

32

)
]

, (4.105)

where εk(z) denotes the kth iteration of the extinction profile, rk
32 is the kth

iteration of the effective radius, F0(z) is the ‘true’ signal, measured with FOV
γ0, and F0

(
εk(z), rk

32
)

is the signal, simulated with the profile εk(z) and the
effective radius rk

32.
New value of rk+1

32 is found through the ratio F1/F0 with new profile εk+1(z).
The iterations go on until the required accuracy is achieved.

The example of such retrieval is presented in Fig. 4.5 and in Table 4.2. Only
0th (starting) and 11th iterations are plotted in Fig. 4.5. The first six iterations
are shown in Table 4.2. It is seen that the retrieval within the single scattering
approximation can underestimate the value of the extinction coefficient by two
times, whereas after ten iterations the retrieved profile in fact replicates the true
one. The derived value of r32 is fairly accurate at the first iteration (overestimated
of about 10%) and converges rapidly to the true value.
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Fig. 4.5. Example of the extinction profile retrieval.

Table 4.2. Example of the effective droplets radius retrieval

Iteration number 1 2 3 4 5 6

Effective radius (µm) 6.57 5.84 6.02 6.02 6.01 6.00

4.6 Conclusion

This chapter has given a review of the main methods of Raman lidar sounding.
It has displayed the advantages of and the additional possibilities in the remote
sensing of the environment due to the usage of Raman lidars. It was emphasized
that most of the methods of processing Raman lidar data rely on the lidar
equation formulated within the single scattering approximation. The analytical
theory of the Raman lidar return with regard to multiple scattering has been
described in this chapter in great depth. The theory is based on the developed
earlier approach of small-angle quasi-single scattering approximation, used to
describe multiple scattering in usual (elastic) lidar sounding. The investigation
of the angular structure of the Raman lidar return made it possible to relate the
angular characteristics of multiple scattering to the microphysical characteristics
of a sounding medium and to suggest the method of their retrieval by measuring
the Raman lidar return with a multiple-field-of-view receiver, parting multiple
scattering. In particular, the method of measuring the extinction coefficient and
also the effective radius of droplets in warm clouds was described. The method
could have an advantage over the similar method when using elastic scattering,
because of the simple angular behaviour of the Raman backscattering phase
function.
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