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5.1 Introduction

Aerosols directly affect the Earth’s climate by scattering and absorption of ra-
diation, and indirectly by changing the microphysical properties of clouds. The
total effect of aerosols on climate is very uncertain, both in magnitude and even
in sign, representing one of the largest uncertainties in climate research. In order
to improve our understanding of the effect of aerosols on climate, global mea-
surements are needed of a number of aerosol properties such as size of particles,
their refractive index and aerosol optical thickness. The only way to obtain these
parameters at a global scale is by means of satellite remote sensing.

Information on aerosol properties is contained in the spectral and angular be-
havior of the total intensity and the polarization properties of backscattered sun-
light. Most satellite instruments that are used for aerosol retrieval only measure
the intensity spectrum of backscattered light. Among these instruments are the
Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), the Total Ozone Mapping Spectrom-
eter (TOMS), the Global Ozone Monitoring Experiment (GOME), the Scan-
ning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIA-
MACHY), the Medium Resolution Imaging Sensor (MERIS), and the Ozone
Monitoring Instrument (OMI). Retrieval algorithms for instruments of this type
allow the choice between a number of standard aerosol models (a combination
of size distribution and refractive index), where the model that agrees best with
the measured spectrum is used to determine the aerosol optical thickness. On
the one hand these intensity -only retrievals do not provide enough information
to answer the relevant questions in climate research, and on the other hand the
retrieved optical thickness depends critically on the choice of the aerosol model.
The information content with respect to aerosol properties is significantly larger
for multiple-viewing-angle intensity measurements as performed by the Multi-
angle Imaging Spectro-Radiometer (MISR), for multiple-viewing-angle intensity
and polarization measurements as performed by the Polarization and Anisotropy
of Reflectances for Atmospheric Sciences Coupled with Observations from a Li-
dar instrument (PARASOL), and for single-viewing-angle intensity and polar-
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ization measurements, as performed by GOME-2. These instruments contain
enough information to do more than just distinguishing between a number of
aerosol models. Therefore, the ’classical’ retrieval approach described above is
not sufficient for these more advanced instruments. Instead, a retrieval approach
is required that makes full use of the information content of the measurement.

Recently a new approach to the retrieval of aerosol properties has been de-
veloped (Hasekamp and Landgraf, 2005a,b). Instead of assuming a number of
standard aerosol models, the developed method aims to retrieve microphysical
aerosol properties corresponding to a bi-modal aerosol size distribution. The
retrieval of these aerosol parameters from satellite measurements requires a for-
ward model F that describes how the measured data depend on the aerosol
parameters, viz.

y = F(x) + ey. (5.1)

Here y is the measurement vector containing the measured data, e.g. inten-
sity and/or polarization measurements at different wavelengths and/or different
viewing angles, and ey is the corresponding error vector. x is the state vector
containing the aerosol parameters to be retrieved. The forward model consists
of two parts. The first part relates the physical aerosol properties (size distri-
bution, refractive index) to their optical properties (scattering and extinction
coefficients, phase matrix). This relation can be described by Mie theory for
spherical particles (van der Hulst, 1957) or alternative theories for particles of
other shapes (Wiscombe and Grams, 1988; Koepke and Hess, 1988; Mishchenko
and Travis, 1994; Mishchenko et al., 1995). The second part of the forward model
is an atmospheric radiative transfer model that simulates the intensity vector at
the top of the atmosphere for given optical input parameters. Since the forward
model F is non-linear in the microphysical aerosol parameters contained in x,
the inversion of Eq. (5.1) has to be performed iteratively. Hereto, the forward
model F in Eq. (5.1) is replaced by its linear approximation in each iteration
step n

y ≈ F(xn) + K (x − xn) + ey, (5.2)

where xn is the state vector for the iteration step under consideration and K is
the Jacobian matrix containing the derivatives of the forward model with respect
to the elements of x, where element Kij of K is defined by:

Kij =
∂Fi

∂xj
(xn). (5.3)

The inversion of Eq. (5.2) can be performed analytically. Once xn is close enough
to the true state vector x, the Jacobian matrix K can be used to calculate the
mapping of the measurement errors ey to errors on the retrieved aerosol param-
eters ex. Thus, the Jacobian matrix K plays an important role in the retrieval
process, both for finding an appropriate solution of the inversion problem and for
a solid error analysis. Therefore, in the most general case of aerosol retrieval from
intensity and polarization measurements, a linearized vector radiative transfer
model is needed that simulates the intensity vector at the top of the model at-
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mosphere and additionally calculates the derivatives of the Stokes parameters
with respect to the aerosol properties to be retrieved.

For scalar radiative transfer, a general linearization approach was proposed
by Marchuk (1964) who employed the forward-adjoint perturbation theory ap-
proach, known from neutron transport theory (see, for example, Bell and Clas-
stone (1970)), to atmospheric scalar radiative transfer. This approach has been
used by, for example, Ustinov (1991), Rozanov et al. (1998) and Landgraf et
al. (2002) for the linearization of scalar radiative transfer with respect to atmo-
spheric absorption properties, by Landgraf et al. (2001) for the linearization with
respect to surface properties, and by, for example, Ustinov (1992) and Sendra
and Box (2000) for the linearization with respect to atmospheric scattering prop-
erties. Another approach for the linearization of scalar radiative transfer has
been followed by Spurr et al. (2001), who developed an analytical linearization
with respect to absorption and scattering properties for the discrete ordinate
method of scalar radiative transfer (Chandrasekhar, 1960; Stamnes et al., 1988).
For plane-parallel vector radiative transfer, an analytical linearization with re-
spect to atmospheric absorption properties has been developed by Hasekamp
and Landgraf (2002), who extended the forward-adjoint perturbation theory to
include polarization.

An analytical linearization of vector radiative transfer with respect to at-
mospheric scattering properties has recently been achieved by Hasekamp and
Landgraf (2005a). They combined the linearization of radiative transfer with a
linearization of Mie theory to obtain a radiative transfer model that provides
the requested derivatives of the Stokes parameters at the top of the atmosphere
with respect to microphysical aerosol properties. Based on this linearized vec-
tor radiative transfer model, Hasekamp and Landgraf (2005b) developed a novel
approach to the retrieval of microphysical aerosol properties from multi-spectral
single-viewing-angle measurements of intensity and polarization. This retrieval
approach uses the Phillips–Tikhonov regularization method for the analytical
inversion of the linearized radiative transfer model. A powerful feature of this
approach is that it quantifies the information content of the measurement as part
of the retrieval procedure and extracts the available information. The aim of this
chapter is to review this retrieval approach based on linearized radiative transfer
and Phillips–Tikhonov regularization. The first part of this chapter (section 5.2–
5.5) is devoted to the linearization of vector radiative transfer with respect to
microphysical aerosol properties. The second part of the chapter (section 5.6 and
5.7) discusses the application of the linearized vector radiative transfer model in
a retrieval scheme using Phillips–Tikhonov regularization.

5.2 Radiative transfer model

The radiance and state of polarization of light at a given wavelength can be
described by an intensity vector I which has the Stokes parameters as its com-
ponents (see, for example, Chandrasekhar (1960)):

I = [I, Q, U, V ]T , (5.4)
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where T indicates the transposed vector, and the Stokes parameters are defined
with respect to a certain reference plane. The angular dependence of single scat-
tering of polarized light can be described by means of the scattering phase matrix
P. We will restrict ourselves to scattering phase matrices of the form

P(θ) =




p1(θ) p5(θ) 0 0
p5(θ) p2(θ) 0 0

0 0 p3(θ) p6(θ)
0 0 −p6(θ) p4(θ)


 . (5.5)

where p1, p2, . . . , p6 are certain functions of scattering angle θ and the scattering
plane is the plane of reference. This type of scattering matrix is valid for (see,
for example, van de Hulst (1957)) (i) scattering by an assembly of randomly
oriented particles each having a plane of symmetry, (ii) scattering by an assembly
containing particles and their mirror particles in equal numbers and with random
orientations, (iii) Rayleigh scattering with or without depolarization effects.

To discuss the single scattering properties of aerosol particles we will use the
scattering plane as the plane of reference. However, for the atmospheric radiative
transfer calculations in this chapter we will use the local meridian plane, defined
as the plane going through the direction of propagation and the vertical direction,
as reference plane.

5.2.1 Radiative transfer equation in operator form

We consider a plane-parallel, macroscopically isotropic atmosphere bounded be-
low by a reflecting surface. Furthermore, we ignore inelastic scattering and ther-
mal emission. The equation of transfer for polarized light is now given in its
forward formulation by

L̂ I = S, (5.6)

where the transport operator

L̂ =
∫

4π

dΩ̃

{[
µ

∂

∂z
+ Kext(z)

]
δ(Ω − Ω̃) E −

Ksca(z)
4π

Z(z, Ω̃,Ω) − δ(z) Θ(µ)|µ| Rs(Ω̃,Ω) Θ(−µ̃)|µ̃|
}

, (5.7)

is adopted from scalar radiative transfer (Marchuk, 1964; Box et al., 1988; Usti-
nov, 2001; Landgraf et al., 2002). Here, z describes altitude, the direction Ω is
given by (µ, ϕ) where ϕ is the azimuthal angle measured clockwise when look-
ing downward and µ is the cosine of the zenith angle (µ < 0 for downward
directions and µ > 0 for upward directions). Furthermore, dΩ = dµ dϕ, E is
the 4 × 4 unity matrix, Kext and Ksca represent the extinction and scattering
coefficients, respectively, Θ represents the Heaviside step function, and δ is the
Dirac-delta function with δ(Ω − Ω̃) = δ(µ − µ̃)δ(ϕ − ϕ̃). The first term of the
radiative transfer operator describes the extinction of light, whereas the second
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term represents scattering of light from direction Ω̃ to Ω with the phase ma-
trix Z(z, Ω̃,Ω), defined with respect to the local meridian plane. The last term
on the right-hand side of Eq. (5.7) describes the surface reflection at the lower
boundary of the atmosphere with reflection matrix Rs.

The right-hand side of Eq. (5.6) provides the source of light and can either
be a volume source inside the atmosphere or a surface source chosen to repro-
duce the incident flux conditions at the boundaries of the atmosphere, or some
combination of the two. In the UV and visible part of the spectrum the radiation
source S is determined by the unpolarized sunlight that illuminates the top of
the Earth atmosphere:

S(z,Ω) = µoδ(z − ztop)δ(Ω − Ωo)Fo. (5.8)

Here, ztop is the height of the model atmosphere, Ωo = (−µo, ϕo) describes the
geometry of the incoming solar beam (we define µo > 0), and Fo is given by

Fo = [Fo, 0, 0, 0]T , (5.9)

where Fo is the solar flux per unit area perpendicular to the direction of the
solar beam. Because the reflection of light at the ground surface is already in-
cluded in the radiative transfer operator (5.7) and the incoming solar beam is
represented by the radiation source of Eq. (5.8), the intensity vector I is subject
to homogeneous boundary conditions:

I(ztop,Ω) = [0, 0, 0, 0]T for µ < 0,

I(0,Ω) = [0, 0, 0, 0]T for µ > 0. (5.10)

In conjunction with these boundary conditions, the radiation source S can be
interpreted as located at a vanishingly small distance below the upper boundary.
Similarly, the surface reflection takes place at a vanishingly small distance above
the lower boundary (see, for example, Morse and Feshbach (1953)).

In order to handle the integration over azimuth angle in Eq. (5.6) we use a
decomposition of the radiative transfer equation into corresponding equations
per Fourier component (Hovenier and van der Mee, 1983; de Haan et al., 1987):

L̂m I±m = S±m, (5.11)

with

L̂m =
∫ 1

−1
dµ̃

{[
µ

∂

∂z
+ Kext(z)

]
δ(µ − µ̃) E −

Ksca(z)
2

Zm(z, µ̃, µ) − δ(z) Θ(µ)|µ| Rm
s (µ̃, µ) Θ(−µ̃)|µ̃|

}
. (5.12)
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The corresponding Fourier expansion of the intensity vector is given by

I(z,Ω) =
∞∑

m=0

(2 − δm0)
[
B+m(ϕo − ϕ)I+m(z, µ) + B−m(ϕo − ϕ)I−m(z, µ)

]
,

(5.13)
where δm0 is the Kronecker delta, and

B+m(ϕ) = diag[cos mϕ, cos mϕ, sin mϕ, sin mϕ], (5.14)
B−m(ϕ) = diag[− sin mϕ, − sin mϕ, cos mϕ, cos mϕ]. (5.15)

The Fourier coefficients of the intensity vector are given by

I+m(z, µ) =
1
2π

∫ 2π

0
dϕ B+m(ϕo − ϕ) I(z,Ω),

I−m(z, µ) =
1
2π

∫ 2π

0
dϕ B−m(ϕo − ϕ) I(z,Ω). (5.16)

Similarly, a Fourier expansion of the radiation source S(z,Ω) is obtained, with
Fourier coefficients

S+m(z, µ) =
1
2π

µo δ(z − ztop) δ(µo + µ) Fo,

S−m(z, µ) = [0, 0, 0, 0]T . (5.17)

From Eqs (5.10) and (5.17) it follows that I−m = 0, so the Fourier expansion of
the intensity vector contains terms of I+m only.

The Fourier expansion of the phase matrix is given by

Z(z, Ω̃,Ω) =
1
2

∞∑
m=0

(2 − δm0)
[
B+m(ϕ̃ − ϕ)Zm(z, µ̃, µ)(E + Λ)

+ B−m(ϕ̃ − ϕ)Zm(z, µ̃, µ)(E − Λ)
]
, (5.18)

where
Λ = diag [1, 1, −1, −1] . (5.19)

The mth Fourier coefficient of the phase matrix can be calculated by

Zm(z, µ̃, µ) = (−1)m
L∑

l=m

Pl
m(−µ) Sl(z) Pl

m(−µ̃), (5.20)

where L is a suitable truncation index (Ustinov, 1988) and Pl
m is the generalized

spherical function matrix given by

Pm
l (µ) =




P l
m0(µ) 0 0 0

0 P l
m+(µ) P l

m−(µ) 0
0 P l

m−(µ) P l
m+(µ) 0

0 0 0 P l
m0(µ)


 , (5.21)



5 Linearized radiative transfer in aerosol remote sensing 165

where
P l

m± =
1
2
(
P l

m,−2 ± P l
m,2
)
, (5.22)

and P l
mn(µ) are the generalized spherical functions (Gel’fand et al., 1963), which

were introduced in atmospheric radiative transfer by Kuščer and Ribarič (1959).
Sl is the expansion coefficient matrix having the form

Sl =




αl
1 αl

5 0 0
αl

5 αl
2 0 0

0 0 αl
3 αl

6
0 0 −αl

6 αl
4


 , (5.23)

where the expansion coefficients follow from the scattering phase matrix P in
Eq. (5.5) (see, for example, de Rooij and van der Stap (1984)):

αl
1 =

2l + 1
2

∫ 1

−1
P l

0,0(cos θ)p1(θ) d(cos θ), (5.24)

αl
2 + αl

3 = −2l + 1
2

√
(l − 2)!
(l + 2)!

∫ 1

−1
P l

2,2(cos θ)(p2(θ) + p3(θ)) d(cos θ), (5.25)

αl
2 − αl

3 = −2l + 1
2

√
(l − 2)!
(l + 2)!

∫ 1

−1
P l

2,−2(cos θ)(p2(θ) + p3(θ)) d(cos θ), (5.26)

αl
4 =

2l + 1
2

∫ 1

−1
P l

0,0(cos θ)p4(θ) d(cos θ), (5.27)

αl
5 =

2l + 1
2

∫ 1

−1
P l

0,2(cos θ)p5(θ) d(cos θ), (5.28)

αl
6 =

2l + 1
2

∫ 1

−1
P l

0,2(cos θ)p6(θ) d(cos θ). (5.29)

In this chapter we assume that the surface reflection matrix obeys the same
symmetry relations as the scattering phase matrix (Hovenier, 1969) and thus can
also be expanded in a Fourier series. The Fourier coefficients Rm

s of the surface
reflection matrix Rs are given by:

Rm
s (µ̃, µ) =

1
2π

∫ 2π

0
d(ϕ̃−ϕ)

[
B+m(ϕ̃ − ϕ) + B−m(ϕ̃ − ϕ)

]
Rs(Ω̃,Ω). (5.30)

In order to obtain the Fourier coefficients Im from Eq. (5.11) for a verti-
cally inhomogeneous atmosphere, the model atmosphere has to be divided in a
number of homogeneous layers, where each layer is characterized by a height-
independent scattering coefficient, extinction coefficient, and scattering matrix.
Several numerical models exist to solve the corresponding radiative transfer prob-
lem. We will use the Gauss–Seidel model described by Landgraf et al. (2002) and
Hasekamp and Landgraf (2002).
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5.3 Mie scattering calculations

The optical input parameters of the radiative transfer equation (5.6) are the
extinction and scattering coefficients and the phase matrix Z in the form of
expansion coefficient matrices Sl. These parameters are determined by scatter-
ing and absorption by aerosols, scattering by air molecules, and absorption by
atmospheric gases, and are obtained from these different components:

Kext = Ka
ext + Kr

ext + Kg
ext, (5.31)

Ksca = Ka
sca + Kr

sca, (5.32)

α =
Ka

sca αa

Ksca
+

Kr
sca αr

Ksca
, (5.33)

where the superscript a denotes aerosol, the superscript r denotes Rayleigh scat-
tering, the superscript g denotes gas absorption, and we omitted the sub- and
superscripts of the expansion coefficients αl

j .
The optical properties of aerosols depend on the size, shape, and type of

aerosols. In this chapter we restrict ourselves to spherical aerosols which means
that the optical properties of aerosols can be calculated using Mie theory. Here
we will summarize the most important formulas needed for Mie calculations
(see, for example, de Rooij and van der Stap (1984)). A complete overview of
Mie scattering theory is given by van de Hulst (1957).

In order to calculate the elements of the Mie scattering phase matrix P in
Eq. (5.5), we first consider the transformation matrix F (van de Hulst, 1957)
which is defined as

F =
k2 Csca

4π
P, (5.34)

with elements f1, f2, . . . , f6, analogous to the elements p1, p2, . . . , p6 in Eq. (5.5).
In Eq. (5.34) Csca is the scattering cross-section, and k = 2π/λ, where λ denotes
wavelength. For a single sphere of radius r the elements of the transformation
matrix F are given by

f1 =
1
2

(S1S
∗
1 + S2S

∗
2 ) , (5.35)

f2 = f1, (5.36)

f3 =
1
2

(S1S
∗
2 + S2S

∗
1 ) , (5.37)

f4 = f3, (5.38)

f5 =
1
2

(S1S
∗
1 − S2S

∗
2 ) , (5.39)

f6 =
i

2
(S1S

∗
2 − S2S

∗
1 ) , (5.40)

where we omitted the dependence on scattering angle θ and particle radius r.
In Eqs (5.35)–(5.40), S1 and S2 are the elements of the two-by-two scattering
amplitude matrix relating the electric field vector (containing the component
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parallel and the component perpendicular to the scattering plane) of the scat-
tered beam to that of the incoming beam, and the asterisk denotes the complex
conjugate. The functions S1 and S2 are given by

S1(θ) =
∞∑

n=1

2n + 1
n(n + 1)

(anπn(θ) + bnτn(θ)) , (5.41)

S2(θ) =
∞∑

n=1

2n + 1
n(n + 1)

(bnπn(θ) + anτn(θ)) , (5.42)

where πn and τn are functions of only scattering angle and are expressed in
associated Legendre functions as

πn(θ) =
1

sin θ
P 1

n(cos θ), (5.43)

τn(θ) =
d

dθ
P 1

n(cos θ). (5.44)

The most substantial part of the Mie calculations is the computation of the
Mie coefficients an and bn in Eqs (5.41) and (5.42) which are functions of the
particle’s complex refractive index m = mr + imi and the size parameter kr.
A numerical procedure for calculating an and bn is given by Rooij and van der
Stap (1984), and is summarized in Appendix A of this chapter. The scattering
and extinction cross-sections, Csca and Cext, of a single sphere with radius r can
also be calculated using the coefficients an and bn:

Csca(r) =
2π

k2

∞∑
n=1

(2n + 1)[|an|2 + |bn|2], (5.45)

Cext(r) =
2π

k2

∞∑
n=1

(2n + 1)Re(an + bn). (5.46)

Equations (5.35)–(5.42), (5.45), and (5.46) provide expressions for the scat-
tering matrix and absorption and extinction cross-sections for a single sphere. In
nature, a distribution of particles with different sizes is normally encountered.
Under the assumption of independent scattering (see, for example, Hansen and
Travis (1974)) the scattering and extinction cross-section for a size distribution
are given by

C̄sca =
∫ ∞

0
Csca(r) n(r) dr, (5.47)

C̄ext =
∫ ∞

0
Cext(r) n(r) dr, (5.48)

where n(r) is the aerosol size distribution normalized to unity (e.g. a lognormal
distribution; see Appendix B).
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Similarly, element fj of the transformation matrix F (5.34) for a size distri-
bution is given by

f̄j =
∫ ∞

0
fj(r) n(r) dr. (5.49)

In this chapter the integrations over size distribution are approximated by
a sum over different size bins. Here, for a function g(r) the integral over size
distribution is approximated by

ḡ ≈
N∑

i=1

g(ri) ni ∆ri, (5.50)

where ri is the middle of size interval i, ni = n(ri) and ∆ri is the width of size
interval i.

The elements pj of the scattering phase matrix P of an ensemble with given
size distribution can be obtained from f̄j and C̄sca via

pj =
4π

k2

f̄j

C̄sca
. (5.51)

The expansion coefficients αj
i can now be calculated from the elements of the

scattering phase matrix P using Eqs (5.24)–(5.29). Here, the integrals over cos θ
can be calculated analytically (Domke, 1975) or numerically (de Rooij and van
der Stap, 1984). The latter approach will be adopted for the calculations in this
chapter. Furthermore, the aerosol extinction and scattering coefficients Ka

ext and
Ka

sca for each homogeneous layer are obtained by multiplying the corresponding
cross-section by the layer integrated aerosol number concentration in that layer.

5.4 Linearization of the forward model

As follows from the previous section, the relevant optical properties of spherical
homogeneous aerosol particles can be obtained from the aerosol size distribution,
the aerosol number concentration, and the aerosol refractive index. Often, the
size distribution consists of different modes, where each mode contains particles
of the same refractive index. Thus, in the most general case the elements of the
state vector x for aerosol retrieval in Eq. (5.1) are for each homogeneous layer
and mode of the size distribution, the real part of the refractive index mr, the
imaginary part of the refractive index mi, the elements ni of the discretized
aerosol size distribution, and the aerosol number concentration.

The elements of the forward model vector F are in the most general case mod-
eled values of light intensity and polarization at the top of the model atmosphere
(at different wavelengths and in different viewing directions of the satellite). We
will use the symbol Ei to refer to the modeled value of the ith Stokes parameter
at the top of the atmosphere, at a given wavelength and viewing direction of
the satellite measurement. Ei is called a radiative effect. The radiative effect Ei
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can be extracted from the intensity vector field I (i.e. the solution of the radia-
tive transfer equation (5.6)) with a suitable response vector function Ri, via the
inner product (see, for example, Marchuk (1964)):

Ei = 〈Ri, I〉. (5.52)

Here, the inner product of two arbitrary vector functions a and b is defined by

〈a,b〉 =
∫

dz

∫
dΩ aT (z,Ω)b(z,Ω), (5.53)

with integration over full solid angle and altitude range of the model atmosphere.
The response functions Ri are given by

Ri(z,Ω) = δ(z − ztop)δ(Ω − Ωv)ei, (5.54)

where ei is the unity vector in the direction of the ith component of the intensity
vector, and Ωv = (µv, ϕv) denotes the viewing direction of the instrument. In
this context the response function formalism may seem somewhat awkward, but
it is essential for a proper presentation of the adjoint formulation of radiative
transfer, which will be described in section 5.4.1.

The requested derivatives of the elements of the forward model vector F
in Eq. (5.2) can be expressed by the corresponding derivatives of the radiative
effects Ei. Thus, the derivatives that we need to calculate are the derivatives
∂Ei/∂xk. These derivatives can be written as

∂Ei

∂xk
=

6∑
j=1

L∑
l=0

∂Ei

∂αl
j

∂αl
j

∂xk
+

∂Ei

∂Kext

∂Kext

∂xk
+

∂Ei

∂Ksca

∂Ksca

∂xk
. (5.55)

Thus, the linearization corresponds to the calculation of two types of deriva-
tives: (i) the derivatives ∂Ei/∂αj

i , ∂Ei/∂Kext, ∂Ei/∂Ksca and (ii) the derivatives
∂αl

j/∂xk ∂Kext/∂xk, and ∂Ksca/∂xk. In the following we present an analytical
approach to calculate these derivatives.

5.4.1 Linearization of radiative transfer

5.4.1.1 Forward-adjoint perturbation theory

For the linearization of radiative transfer with respect to the optical input pa-
rameters of the radiative transfer equation we will employ the forward-adjoint
perturbation theory. Here, the adjoint formulation of radiative transfer is of es-
sential importance. The transport operator adjoint to L̂, which is called L̂†, is
defined by requiring that (see, for example, Marchuk (1964); Box et al. (1988))

〈I2, L̂I1〉 = 〈L̂†I2, I1〉 (5.56)

for arbitrary vector functions I1 and I2. The adjoint vector field I† is the solution
of the adjoint transport equation
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L̂†I† = S† (5.57)

with any suitable adjoint source S†. The adjoint operator L̂† is given by
(Marchuk, 1964; Carter et al., 1978)

L̂† =
∫

4π

dΩ̃

{[
− µ

∂

∂z
+ Kext(z)

]
δ(Ω − Ω̃) E

−Ksca(z)
4π

ZT (z,Ω, Ω̃) − δ(z)Θ(−µ)|µ|RT
s (Ω, Ω̃) Θ(µ̃)|µ̃|

}
. (5.58)

The inclusion of the surface reflection term (last term on the right-hand side) is
discussed by Ustinov (2001) and Landgraf et al. (2002). We see that compared
to the forward operator L̂ the adjoint operator L̂† has a different sign in the
first term, and the phase matrix Z(z, Ω̃,Ω) and the surface reflection matrix
Rs(Ω̃,Ω) are replaced by ZT (z,Ω, Ω̃), and RT

s (Ω, Ω̃), respectively. The adjoint
vector field I† has to fulfill the boundary conditions (Box et al., 1988)

I†(ztop,Ω) = [0, 0, 0, 0]T for µ > 0,

I†(0,Ω) = [0, 0, 0, 0]T for µ < 0. (5.59)

The forward radiative transfer equation (5.6) and the adjoint transport equa-
tion (5.57) do not describe two independent problems. The solutions I and I†

are linked by the relation
〈S†, I〉 = 〈I†,S〉, (5.60)

which can be derived in a straightforward fashion using Eqs (5.6), (5.56), and
(5.57). We now take the response vector function Ri of Eq. (5.54) as the adjoint
source S†. In this particular case, the left-hand side of Eq. (5.60) represents the
definition of the radiative effect Ei (see Eq. (5.52)). Thus we see from Eq. (5.60)
that there are two ways of computing the radiative effect Ei. The first is the
forward approach: solve the radiative transfer equation (5.6) and take the inner
product of the response function Ri with the solution I. The second is the
adjoint approach: solve the adjoint transport equation (5.57) for the adjoint
source S† = Ri and take the inner product of its solution I† with the radiation
source S. Now also the physical meaning of the adjoint field becomes clear.
Namely, the value of the adjoint field at a given altitude zs and in a certain
direction Ωs gives the effect of a point source δ(z − zs,Ω − Ωs) on the radiative
effect Ei. In other words, the adjoint field gives us the importance of a radiation
source anywhere in the atmosphere for the radiative effect Ei (Lewins, 1965).
Thus, if the adjoint vector field is known the radiative effect Ei can be calculated
for any radiation source via Eq. (5.60).

Let us consider an atmosphere with a set of optical parameters (αl
j , Kext

and Ksca) contained in the vector go. We call this atmosphere the unperturbed
atmosphere. We denote the corresponding vector intensity field by Io, and the
adjoint field corresponding to the adjoint source Ri by I†

o(Ri). We also consider
a perturbed atmosphere with a vector of optical parameters g = go +∆g, where
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the optical parameters are perturbed in one layer of the model atmosphere. The
radiative effect Ei for the perturbed atmosphere is given by (Marchuk, 1964)

Ei(g) = Ei(go) − 〈I†
o(Ri), ∆L̂ Io〉 + O(∆g2), (5.61)

where O(∆g2) denotes second and higher order terms. The change ∆L̂ in the
radiative transfer operator L̂ caused by the perturbation ∆g can be written as:

∆L̂ =
K∑

k=1

∆gk ∆L̂k, (5.62)

where ∆L̂k is the the change in ∆L̂ per unit in parameter gk, and K is the total
number of optical parameters. The explicit form of ∆L̂k follows from the defini-
tion of the transport operator L̂ (5.7). Substitution of Eq. (5.62) in Eq. (5.61)
and comparison with a Taylor expansion yields the requested derivatives of the
radiative effect Ei with respect to the optical parameters gk:

∂Ei

∂gk
= −〈I†

o(Ri), ∆L̂k Io〉. (5.63)

So, in order to calculate the requested derivative the intensity vector field
Io is required as well as the adjoint fields I†

o for the adjoint sources Ri with
i = 1, . . . , 4.

5.4.1.2 Transformation to pseudo-forward problem

The adjoint field can be calculated with the same radiative transfer model as
the forward intensity field, because the adjoint transport equation (5.57) may
be transformed to a pseudo-forward problem. For this purpose we consider the
vector function

Ψ(z,Ω) = I†(z, −Ω). (5.64)

With substitution of Eq. (5.64) in Eq. (5.57), and with the symmetry relation
of the scattering phase matrix (Hovenier, 1969)

ZT (z, −Ω, −Ω̃) = QZ(z, Ω̃,Ω)Q, (5.65)

with
Q = diag[1, 1, 1, −1], (5.66)

and a similar relation for the surface reflection matrix Rs, the adjoint transport
equation transforms to a pseudo-forward equation

L̂ΨΨ = SΨ, (5.67)

where
SΨ(z,Ω) = Ri(z, −Ω). (5.68)

Here, the transport operator L̂Ψ is the same as L̂ defined in Eq. (5.7), except
that Z(z, Ω̃,Ω) is replaced by QZ(z, Ω̃,Ω)Q and Rs(z, Ω̃,Ω) is replaced by
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QRs(z, Ω̃,Ω)Q. According to Eqs (5.64) and (5.59), Ψ has to fulfill the same
boundary conditions as I in Eq. (5.10).

For the pseudo-forward problem a Fourier expansion can be performed as de-
scribed in section 5.2. However, here the Fourier coefficients S±m

Ψ of the pseudo-
forward source SΨ(z,Ω) = Ri(z, −Ω) depend on the index i, indicating the
radiative effect Ei under consideration. For i = 1, 2, i.e. for the calculation of
the derivatives of I and Q, we obtain

S+m
Ψ (z, µ) =

1
2π

δ(z − ztop) δ(µ + µv) ei,

S−m
Ψ (z, µ) = [0, 0, 0, 0]T . (5.69)

Hence, for the corresponding pseudo-forward problems we obtain a Fourier ex-
pansion of Ψ containing terms of Ψ+m only. For i = 3, 4, i.e. for the calculation
of the derivatives of U and V , we obtain

S+m
Ψ (z, µ) = [0, 0, 0, 0]T ,

S−m
Ψ (z, µ) =

1
2π

δ(z − ztop) δ(µ + µv) ei. (5.70)

Hence, for the corresponding pseudo-forward problems we obtain a Fourier ex-
pansion of Ψ containing terms of Ψ−m only.

5.4.1.3 Calculation of the derivatives

In the following we will work out the expressions for the derivatives with re-
spect to the expansion coefficients αl

j , the scattering coefficient Ksca, and the
extinction coefficient Kext. Hereto, we write instead of Eq. (5.62)

∆L̂ =
6∑

j=1

L∑
l=0

∆αl
j ∆L̂l

j + ∆Ksca∆L̂sca + ∆Kext∆L̂ext, (5.71)

where

∆L̂l
j =

βs

4π

∫

4π

dΩ̃
∂Z(z, Ω̃,Ω)

∂αl
j

, (5.72)

∆L̂sca =
1
4π

∫

4π

dΩ̃Z(z, Ω̃,Ω), (5.73)

∆L̂ext =
∫

4π

dΩ̃ δ(Ω − Ω̃) E. (5.74)

In order to obtain expressions for the derivatives with respect to αl
j , Ksca, and

Kext, we substitute ∆L̂l
j , ∆L̂sca, and ∆L̂ext in Eq. (5.63), respectively. Addi-

tionally, we use the Fourier expansion of I, Ψ, and Z, and evaluate the integrals
over azimuth angle. We then obtain expressions in the form of cosine- and sine
expansions which have a similar form for the three types of derivatives. For the
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radiative effects Ei with i = 1, 2 (i.e. corresponding to Stokes parameters I and
Q, respectively), the derivatives are given by a cosine expansion:

∂Ei

∂gk
= −

∞∑
m=0

(2 − δm0) cos m(φv − φ0) K+m
i (gk). (5.75)

For the radiative effects Ei with i = 3, 4 (i.e. corresponding to Stokes param-
eters U and V , respectively) the derivatives are given by a sines expansion:

∂Ei

∂gk
= −

∞∑
m=0

(2 − δm0) sin m(φv − φ0) K−m
i (gk). (5.76)

The specific integral kernels for αl
j , Ksca, and Kext are determined by ∆L̂l

j ,
∆L̂sca, and ∆L̂ext, respectively. For the derivative of the radiative effect Ei with
respect to the expansion coefficient αl

j , we obtain for the integral kernel

K±m
i (αl

j) =
π

4

∫ ztop

zbot

dz Ksca(z)

∫ 1

−1

∫ 1

−1
dµdµ̃ Ψ±mT

o (Ri, z,−µ) Λ Żm(z, µ̃, µ) I+m
o (z, µ̃), (5.77)

where Λ = diag [1, 1, −1, −1], and the derivative Żm = ∂Zm/∂αl
j is given by

Żm(z, µ̃, µ) = (−1)m Pl
m(−µ) Hj Pl

m(−µ̃). (5.78)

Here, the matrix Hj has the same structure as the expansion coefficient matrix
(5.23) and is given by

Hj =




δj1 δj5 0 0
δj5 δj2 0 0
0 0 δj3 δj6
0 0 −δj6 δj4


 , (5.79)

where δ is the Kronecker delta.
The integral kernel corresponding to the derivative of the radiative effect Ei

with respect to Ksca is given by:

K±m
i (Ksca) =

π

4

∫ ztop

zbot

dz

∫ 1

−1

∫ 1

−1
dµdµ̃Ψ±mT

o (Ri, z,−µ) ΛZm(z, µ̃, µ) I+m
o (z, µ̃),

(5.80)
and the integral kernel corresponding to the derivative of the radiative effect Ei

with respect to Kext has the following form:

K±m
i (Kext) = 2π

∫ ztop

zbot

dz

∫ 1

−1
dµ Ψ±mT

o (Ri, z,−µ) Λ I+m
o (z, µ). (5.81)



174 Otto P. Hasekamp and Jochen Landgraf

Equations (5.75), (5.76), together with (5.77)–(5.81) provide analytical ex-
pressions for the derivatives of the radiative effect Ei with respect to the expan-
sion coefficients αl

j , the scattering coefficient Ksca, and the extinction coefficient
Kext, respectively. Thus, to calculate these derivatives one needs to solve the
forward radiative transfer equation (5.6) and the adjoint transport equation
(5.57) for the sources SΨ(z,Ω) = Ri(z, −Ω), with i = 1, 4. These fields can be
determined by any vector radiative transfer model that calculates the internal
radiation in the atmosphere, such as the doubling and adding model of Stammes
et al. (1989), the discrete ordinate model VDISORT of Schulz et al. (1999) and
the Gauss–Seidel model of Hasekamp and Landgraf (2002). The latter model is
used for all numerical simulations in this chapter. The corresponding integral
kernels of equations (5.77)–(5.81) are worked out by Landgraf et al. (2004) for
this model.

5.4.2 Linearization of Mie theory

The derivatives of the optical input parameters of the radiative transfer equation
with respect to the different elements xk of the state vector can be found from
the corresponding derivatives of the optical aerosol parameters (see Eqs (5.31)–
(5.33)):

∂Kext

∂xk
=

∂Ka
ext

∂xk
, (5.82)

∂Ksca

∂xk
=

∂Ka
sca

∂xk
, (5.83)

∂α

∂xk
=

Ka
sca

Ksca

∂αa

∂xk
+

αa

Ksca

∂Ka
sca

∂xk
− Ka

sca αa

(Ksca)2
∂Ka

sca

∂xk
− Kr

sca αr

(Ksca)2
∂Ka

sca

∂xk
, (5.84)

where we omitted the indices for the expansion coefficients αl
j . In this subsection

we will derive expressions for the requested derivatives ∂αa/∂xk, ∂Ka
ext/∂xk, and

∂Ka
sca/∂xk. For notational convenience, we will omit the superscript a for the

expansion coefficients in the remainder of this subsection.
In order to calculate the derivatives of the expansion coefficients αl

j with
respect to the real and imaginary part of the refractive index, mr and mi, re-
spectively, we first need to calculate the corresponding derivatives of the elements
fj of the transformation matrix F in Eq. (5.34). These derivatives are expressed
via the derivatives of S1 and S2 (see Eqs (5.35)–(5.40)):

[f1]
′
=

1
2
(
S1[S∗

1 ]
′
+ [S1]

′
S∗

1 + S2[S∗
2 ]

′
+ [S2]

′
S∗

2
)
, (5.85)

[f2]
′
= [f1]

′
, (5.86)

[f3]
′
=

1
2
(
S1[S∗

2 ]
′
+ [S1]

′
S∗

2 + S2[S∗
1 ]

′
+ [S2]

′
S∗

1
)
, (5.87)

[f4]
′
= [f3]

′
, (5.88)
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[f5]
′
=

1
2
(
S1[S∗

1 ]
′
+ [S1]

′
S∗

1 − S2[S∗
2 ]

′
+ [S2]

′
S∗

2
)
, (5.89)

[f6]
′
=

i

2
(
S1[S∗

2 ]
′
+ [S1]

′
S∗

2 − S2[S∗
1 ]

′
+ [S2]

′
S∗

1
)
. (5.90)

Here, the prime denotes the derivative with respect to either mr or mi. The
derivatives of S1 and S2 are given by

[S1]
′
=

∞∑
n=1

2n + 1
n(n + 1)

(
[an]

′
πn + [bn]

′
τn

)
, (5.91)

[S2]
′
=

∞∑
n=1

2n + 1
n(n + 1)

(
[bn]

′
πn + [an]

′
τn

)
. (5.92)

The derivatives of the scattering and extinction coefficients with respect to
mr and mi follow from the corresponding derivatives of the scattering and ex-
tinction cross-sections. These derivatives also depend on the derivatives of an

and bn:

[Csca]
′
=

4π

k2

∞∑
n=1

(2n + 1)
(
an[a∗

n]
′
+ [an]

′
a∗

n + bn[b∗
n]

′
+ [bn]

′
b∗
n

)
, (5.93)

[Cext]
′
=

2π

k2

∞∑
n=1

(2n + 1)Re([an]
′
+ [bn]

′
). (5.94)

Thus, all derivatives with respect to mr and mi depend on the corresponding
derivatives of the Mie coefficients an and bn, for which analytical expressions are
given in Appendix A.

The derivatives of fj , Csca, and Cext with respect to mr and mi given above all
correspond to a single sphere with a given radius. The derivatives for an ensemble
of particles with a given size distribution can be easily obtained via integration
over the size distribution as in Eq. (5.50). The derivatives of elements pj of the
scattering phase matrix (5.5) for the size distribution can then be calculated
using the derivatives of f̄j and C̄sca, viz.

[pj ]
′
=

4π

k2

(
[f̄j ]

′

C̄sca
− f̄j [Csca]

′

C̄2
sca

)
. (5.95)

The derivatives of the expansion coefficients αl
j can be calculated from Eqs (5.24)–

(5.29), replacing αj
i and pj by their corresponding derivatives.

The other type of derivatives that are needed are the derivatives with respect
to the elements ni of the discretized size distribution (see Eq. (5.50)). These
derivatives can be calculated in a straightforward manner. The derivative of an
averaged element f̄j of the transformation matrix F with respect to ni is given
by:

∂f̄j

∂ni
= fj(ri) ∆ri, (5.96)
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and similar expressions hold for the derivatives of C̄sca and C̄ext with respect to
ni. Using the derivatives of f̄j and C̄sca with respect to ni, the derivatives of the
elements pj of the scattering phase matrix (5.5) with respect to ni be calculated
using Eq. (5.95). The corresponding derivatives of the aerosol expansion coeffi-
cients αj

i can be calculated from Eqs (5.24)–(5.29), replacing αj
i and pj by their

corresponding derivatives.
For aerosol retrieval it is often useful to describe the size distribution by

a limited number of parameters, for example the effective radius reff and the
effective variance veff (see Appendix B) of a prescribed size distribution (e.g. a
lognormal distribution). For such retrievals one needs to calculate the derivatives
with respect to these parameters. For an averaged parameter ḡ this derivative is
given by

∂ḡ

∂reff
=

N∑
i=1

∂n̄i

∂reff

∂ḡ

∂n̄i
, (5.97)

and a similar expression holds for the derivative with respect to veff .

5.5 Numerical implementation and results

The linearization approach described in section 5.4 has been implemented in
the Gauss-Seidel vector radiative transfer model described by Landgraf et al.
(2002) and Hasekamp and Landgraf (2002), combined with the Mie scattering
algorithm of de Rooij and van der Stap (1984). Expressions for the integral
kernels of section 5.4.1 can be found in the paper of Landgraf et al. (2004) for
our Gauss–Seidel radiative transfer model.

All radiative transfer calculations in this section were performed for a model
atmosphere that includes Rayleigh scattering and scattering and absorption by
homogeneous spherical aerosol particles. All aerosols were homogeneously dis-
tributed over the lowest 2 km of the atmosphere. We used a bi-modal lognormal
aerosol size distribution, with a mode containing small particles referred to as
the small mode and a mode containing large particles referred to as the large
mode. For this model atmosphere the aerosols are characterized by ten parame-
ters, i.e. five per mode of the size distribution. These parameters are: per mode
the effective radius reff , the effective variance veff , the column integrated aerosol
number concentration N , and the real and imaginary part of the refractive index
m.

Figures 5.1 and 5.2 show the derivatives of Stokes parameters I and Q at
the top of the atmosphere with respect to the logarithm of the effective radius,
real refractive index, and aerosol loading of the two size modes, as a function of
viewing zenith angle for a solar zenith angle of 40o, for a wavelength of 350 nm
and 800 nm, respectively. The relative azimuth angle φo −φv = 180o for negative
viewing zenith angles and φo − φv = 0o for positive viewing zenith angles. For
these geometries the Stokes parameters U and V are equal to zero, so Stokes
parameter Q fully describes the polarization of the backscattered light at the
top of the atmosphere. The derivative with respect to the logarithm of a given
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Fig. 5.1. Derivatives of the Stokes parameters I (left panels) and Q (right panels)
at the top of the atmosphere (TOA), with respect to the logarithm of: (upper panels)
reff , (middle panels) mr, and (lower panels) the column integrated aerosol number
concentration N. The solid lines correspond to parameters of the small mode and the
dashed lines correspond to parameters of the large mode. The derivatives are shown
as a function of viewing zenith angle (VZA), where V ZA < 0 refer to the relative
azimuth angle φo − φv = 180o, and V ZA > 0 refer to φo − φv = 0o. The solar
zenith angle is 40o, and the calculation is performed for a wavelength of 350 nm. The
solar and viewing zenith angles are defined as the smallest angle between the zenith
direction and the solar and viewing direction, respectively. The range −60o to 60o of
viewing zenith angles used in this figure corresponds to a horizon-to-horizon scan from
a satellite at approximately 800 km. The internal radiation field was discretized in 16
Gaussian streams. A bimodal aerosol size distribution was used with reff = 0.05 for
the small mode, reff = 0.75 for the large mode, veff = 0.2 for both modes, mr = 1.45,
mi = −0.0045. The optical thickness at 550 nm is 0.15 with equal contribution from
the small and the large mode. The model atmosphere is bounded below by a black
surface.
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Fig. 5.2. Same as Fig. 5.1 but for a wavelength of 800 nm.

aerosol parameter is a measure for the sensitivity of I and Q to a relative change
in this aerosol parameter, which is a convenient quantity in order to compare
the sensitivities to the different parameters.

The angular dependence of the derivatives is caused by the angular depen-
dence of the following effects: (i) The derivatives of the relevant elements of the
aerosol scattering phase matrix with respect to the different aerosol parameters.
(ii) The light path inside the aerosol layer, which increases with viewing zenith
angle. This causes an increase in sensitivity up to a certain viewing angle because
an increasing fraction of the light is scattered by aerosol particles. However, if
the viewing angle becomes too large this effect causes a decrease in sensitivity
because of increasing extinction within the aerosol layer along the line of sight.
(iii) Multiple scattering effects, which in general smear out the angular effects
of the aerosol scattering phase matrix.
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From Fig. 5.1 it follows that at 350 nm the sensitivities of both I and Q
with respect to the parameters of the small mode are much larger than the
corresponding sensitivities with respect to the parameters of the large mode,
which are in general negligibly small at 350 nm. The angular dependence of the
derivatives of the intensity in Fig. 5.1 is relatively weak which is caused by the
weak angular dependence of the corresponding derivatives of element (1,1) of
the scattering phase matrix (except for the forward scattering direction, which
is not shown in Fig. 5.1). The derivatives with respect to the different aerosol
parameters of element (2,1) of the scattering phase matrix have a larger angular
dependence, which is the most dominant effect in the right panels of Fig. 5.1.
Also multiple scattering effects can be seen here, because both the Rayleigh and
aerosol scattering optical thickness are relatively large at 350 nm. For example,
in the backward scattering direction element (2,1) of the scattering phase matrix
is zero independent of the aerosol properties, i.e. it is insensitive with respect
to aerosol properties. However, the sensitivity of Stokes parameter Q is not zero
in the backward single scattering direction (viewing angle = −40◦), because
the sensitivity is influenced by aerosol scattering in all directions via multiple
scattering.

At 800 nm (Fig. 5.2) the derivatives of both I and Q with respect to the
parameters of the large mode, are significantly larger than at 350 nm, while the
derivatives with respect to the parameters if the small mode are much smaller.
The angular dependence of the derivatives of the phase matrix plays the most
important role at 800 nm, especially for the derivatives of Stokes parameter Q.
Here, the strong angular variation in the derivatives of Q around the single
scattering backward direction (−40◦) is also present in the sensitivity of the
(2,1)-element of the aerosol scattering phase matrix. A similar, but weaker ef-
fect can be seen in the derivatives of the intensity with respect to parameters
of the large mode. Another effect that can be seen in Fig. 5.2 is the slight
increase in sensitivity towards larger (absolute values of) viewing zenith angle.
This increase in sensitivity is caused by an enhanced light path inside the aerosol
layer.

5.6 Retrieval method

In this section we will discuss how the linearized vector radiative transfer model
can be incorporated in a retrieval algorithm for aerosol properties over the ocean.
Here, we assume that the aerosol size distribution can be described by a bi-modal
lognormal function, where each mode is characterized by the effective radius reff ,
the effective variance veff (see Appendix B) and the column integrated aerosol
number concentration N . In what follows we use the superscripts l and s to refer
to the small and large mode of the size distribution, respectively. Additionally,
the complex refractive index m = mr + imi is needed to characterize aerosols.
Furthermore, we assume an altitude distribution with a constant aerosol density
ρo in the lowest layer with height zb of the atmosphere. Above that layer the
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aerosol density decreases with the fourth power in pressure p till a certain height
zt above which we assume no aerosols are located, i.e.

ρ(z) = ρo for z < zb,

ρ(z) = ρo(p(z)/p(zb))4 for zb < z < zt,

ρ(z) = 0 for z > zt. (5.98)

In the retrievals described here nine unknown aerosol parameters are consid-
ered. These are the effective radius reff of the small and large mode, the effective
variance veff of the small and large mode, the column integrated aerosol number
concentration N of the small and large mode, the real and imaginary part of the
refractive index, and the height zb of the layer where the bulk of the aerosols
is located. Here, we assume that the wavelength dependence of the refractive
index is known. For all retrieval simulations in this paper the model atmosphere
is bounded below by a rough ocean surface (see Appendix B). Here, the oceanic
pigment concentration is included as an additional parameter to be retrieved in
addition to the nine aerosol parameters.

5.6.1 Inversion of linearized forward model

In this subsection we consider the inversion of the linearized forward model (5.2),
assuming that the state vector xn of the iteration step under consideration is
close enough to the true state vector so that the linear approximation is valid. In
this case the inversion of Eq. (5.2) provides the solution of our retrieval problem.
Rearranging terms in Eq. (5.2) we obtain

ỹ = K x + ey, (5.99)

with ỹ = y − F(xn) + Kxn. Here, y is the measurement vector, F(xn) is the
forward model vector for state vector xn, K is the Jacobian matrix defined by
Eq. (5.3), and ey is the measurement error vector.

For most types of satellite instruments the inversion of Eq. (5.99) represents
an ill-posed problem. This means that many combinations of the state vector
parameters fit the measurement almost equally well. As a result, the least-squares
solution x̂lsq to our retrieval problem, viz.

x̂lsq = min
x

||S− 1
2

y (Kx − ỹ)||2, (5.100)

is overwhelmed by noise. In order to reduce the effect of noise, we use the
Phillips–Tikhonov regularization method (Phillips, 1962; Tikhonov, 1963), which
introduces a side constraint in addition to the minimization of the least-squares
norm. As a side constraint we choose for our application the minimization of a
weighted norm of the state vector, viz.

x̂reg = min
x

(
||S− 1

2
y (Kx − ỹ)||2 + γ ||Γx||2

)
, (5.101)
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where Γ is a diagonal matrix that contains weighting factors for the different
state vector elements in the side constraint, and the regularization parameter
γ balances the two minimizations in Eq. (5.101). For each iteration step the
solution x̂reg,n+1 in Eq. (5.101) can be written as a matrix equation:

x̂reg = D ỹ, (5.102)

where D is the contribution matrix defined by

D =
(
KT S−1

y K + γΓ
)−1

KT S−1
y , (5.103)

where the superscript T denotes the transposed matrix.
The rationale of minimizing the norm of the state vector as a side constraint

in Eq. (5.101) is to reduce the effect of measurement noise on the solution. Since
the norm of the state vector is a quantity that is very sensitive to noise contribu-
tions, these contributions are reduced using Eq. (5.101) instead of Eq. (5.100).
Clearly, a good choice of γ is of crucial importance for the Phillips–Tikhonov
solution. If γ is chosen too large, the noise contribution will be low but the
least squares norm deviates significantly from its minimum value, i.e. the fit
between forward model and measurement is poor. On the other hand, if γ is
chosen too small the measurement is fitted well but the solution norm is high,
i.e. the solution is overwhelmed by noise. Thus, γ should be chosen such that
the two minimizations are well balanced. Such a value for γ can be found from
the L-curve (Hansen and O’Leary, 1993). The L-curve is a parametric plot of

the weighted least-squares norm ||S− 1
2

y (K(x) − ỹ)|| and the weighted solution
norm ||Γx||, with a characteristic L-shaped corner. The corner of the L-curve
corresponds to the optimum value of the regularization parameter. A numerical
stable and efficient method for determining the corner of the L-curve is given by
Hansen (1992), who defines the corner of the L-curve as the point with maxi-
mum curvature, where the curvature is calculated analytically. Visual inspection
of the L-curves of our retrievals showed that in all cases the method of Hansen
(1992) provided a value for the regularization parameter that corresponds to
the ‘true’ corner of the L-curve. An example of an L-curve with the correspond-
ing curvature is given in Fig. 5.3 for aerosol retrieval from synthetic GOME-2
measurements of intensity and polarization.

Due to the inclusion of the side constraint, the state vector x̂reg retrieved
using Eq. (5.101) does not represent an estimate of the true state vector xtrue,
but its elements represent weighted averages of the elements of xtrue. The relation
between x̂reg and xtrue is expressed by the averaging kernel A (Rodgers, 2000),
viz.

x̂reg = Axtrue + ex. (5.104)

Here, ex represents the error in the state vector caused by measurement errors,
and the averaging kernel is given by

A =
∂x̂

∂xtrue
=

∂x̂
∂xtrue

=
(
KT S−1

y K + γΓ
)−1

KT S−1
y K = D K. (5.105)
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Fig. 5.3. L-curve (upper panel) and corresponding curvature (lower panel) for aerosol
retrieval from synthetic GOME-2 measurements of intensity and polarization.

The matrix A is strongly related to the information content of the measurement
y, i.e. the closer A is to the unity matrix, the higher the information content.
From the matrix A the Degrees of Freedom for Signal (DFS) can be derived
(Rodgers, 2000), which indicates the number of independent pieces of informa-
tion that is retrieved from the measurement:

DFS = trace (A). (5.106)

If xtrue would have represented a discretization of a continuous function, then
the weighted averages contained in x̂reg Eq. (5.104) would have a clear physi-
cal meaning, i.e. an estimate of xtrue at a reduced resolution. However, for our
application the elements of x̂reg represent weighted averages of different aerosol
parameters, which have a limited physical meaning. Therefore, we include infor-
mation from an a priori state vector xa in the solution to make it a meaningful
estimate of the xtrue. Hereto, we add the term (I − A)xa to x̂reg in order to
obtain the final retrieval product x̂, viz.

x̂ = x̂reg + (I − A)xa,

= Axtrue + (I − A)xa + ex. (5.107)
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Thus, in Eq. (5.107) x̂reg represents an estimate of Axtrue and (I − A)xa repre-
sents an estimate of the part (I − A)xtrue of the true state vector that cannot
be retrieved from the measurement. Here, the dependence of a retrieved element
x̂i of the state vector on its corresponding a priori value xa,i is given by

∂x̂i

∂xa,i
= 1 − aii, (5.108)

where aii is element (i,i) of A. An equation similar to Eq. (5.107) has been
used by Rodgers and Connor (2003) to represent retrieval results with respect
to a different a priori state vector than had been used in the retrieval. The
reason that we first solve the minimization problem (5.101) and later add a
priori information in Eq. (5.107), instead of directly including xa in the side
constraint of Eq. (5.101), is that in our approach the amount of information
extracted from the measurement is independent of the a priori state vector xa.
So, this approach is especially suited for characterizing the information content
of satellite measurements.

The weighting factors in the matrix Γ are defined relative to the values
of the corresponding state vector element for the iteration step under consid-
eration. This makes the vector Γx dimensionless. From Eq. (5.101) it can be
seen that if the weighting factor for a certain parameter decreases while the
other weighting factors are kept constant, more information about this param-
eter is obtained from the measurement. This means that the parameters with
small relative weight are less dependent on the a priori information added in
Eq. (5.107). So, if for certain state vector elements less reliable a priori infor-
mation is available than for others, the relative weighting factors corresponding
to these parameters should be set to small values. In this way the dependence
on a priori information for the state vector elements with small relative weight
becomes smaller while for the other parameters the dependence on a priori as-
sumptions becomes larger, compared to the situation where all parameters have
unity relative weight. For our application it may be expected that no reliable a
priori information will be available for the aerosol columns of both modes, be-
cause these two parameters are highly variable. Therefore, the relative weighting
factors corresponding to these two parameters are set to a very low value ε while
the other factors get a unity relative weight. We found that for ε = 1 × 10−8

the retrieved aerosol columns for both modes are virtually independent of their
a priori values.

From Eq. (5.107) it is clear that the retrieved state vector x̂ is affected by
errors in the a priori state vector xa. The error on x̂ caused by an error on xa is
called the regularization error (called smoothing error by Rodgers (2000)). The
regularization error covariance matrix Sr is given by

Sr = (I − A) Sa (I − A)T , (5.109)

where Sa is the a priori covariance matrix. Ideally, Sa is calculated from an en-
semble of states that also include the retrieved state (Rodgers and Connor, 2003).
However, for the application of aerosol satellite remote sensing Sa is in general
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not known, which makes it difficult to calculate Sr for individual retrievals.
However, an estimate for the upper boundary of the regularization error can be
obtained by calculating Sr from Eq. (5.109) by assuming an a priori covariance
matrix representing maximum values for the errors on the elements of xa. In
order to estimate the maximum errors on the elements of xa we used the 17
tropospheric aerosol models of Torres et al. (2001). For these 17 aerosol models
we calculated the mean value and considered the maximum difference between
the mean value and the actual value as a priori error. This resulted in the fol-
lowing a priori standard deviations σa for the different parameters: σa(rs

eff) =
0.05 µm, σa(vs

eff) = 0.23, σa(rl
eff) = 1.29 µm, σa(vl

eff) = 0.22, σa(mr) = 0.065,
and σa(mi) = 0.01. For zb and Cpig we assumed a priori errors of 100%.

The contribution matrix D plays an important role for calculating the error
propagation from measurement y to state vector x. Assuming that the forward
model is linear within the range of the errors, the effect of a random measurement
error on the state vector is called retrieval noise. The retrieval noise covariance
matrix Sx is given by

Sx = D Sy DT . (5.110)

Systematic state vector errors ∆x due to systematic measurement errors ∆y can
also be evaluated using the contribution matrix:

∆x = D ∆y, (5.111)

and a similar expression holds for systematic forward model errors ∆F, but
with ∆y replaced by −∆F. Of course, the systematic errors in measurement and
forward model are not known, because otherwise they would have been corrected
for. However, examples of systematic state vector errors can be calculated for
some reasonable scenarios of systematic measurement and forward model errors.

For estimating direct radiative forcing by aerosols, aerosol optical properties
such as (spectral) optical thickness and single scattering albedo are very im-
portant. These optical properties can be derived from the microphysical aerosol
parameters contained in the state vector x. The standard deviation στ on the
optical thickness can be obtained from the retrieval noise covariance matrix Sx

via

στ =

√√√√
N∑

i=1

N∑
j=1

si,j
∂τ

∂xi

∂τ

∂xj
, (5.112)

where si,j denotes element (i,j) of Sx. The effect of the regularization error
covariance matrix can be obtained in the same way. Systematic errors ∆τ on
the aerosol optical thickness τ are given by

∆τ =
N∑

i=1

∆xi
∂τ

∂xi
. (5.113)

Expressions similar to Eqs (5.112) and (5.113) hold for the aerosol single scat-
tering albedo ω.
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For completeness we would like to note that if in Eq. (5.101) the a priori state
vector is included in the side constraint with γ = 1, and the inverse of the a priori
covariance matrix is used for Γ, Eq. (5.101) would be identical to the optimal
estimation solution (Rodgers, 1976). The optimal estimation solution represents
the maximum likelihood solution given the measurement, a priori information,
and the corresponding covariance matrices. As stated above for the application
of satellite aerosol remote sensing the a priori covariance matrix is not known
with useful accuracy. If an ad hoc matrix is used that has been constructed as a
rough estimate of the a priori covariance matrix, the optimal estimation solution
reduces to the Phillips–Tikhonov solution, but with an arbitrarily chosen value
for the regularization parameter (i.e. γ = 1) which is not necessarily close to
the corner of the L-curve. In the Phillips–Tikhonov minimization (5.101), the
matrix Γ is also an ad hoc matrix, but its absolute values do not affect the
solution, because the side constraint is weighted by the regularization parameter,
for which a suitable value is found using the L-curve. Therefore, in this chapter
we prefer the use of Phillips–Tikhonov regularization in combination with the
L-curve criterion for choosing the regularization parameter, instead of the use
of the optimal estimation method with an ad hoc matrix as a rough estimate of
the a priori covariance matrix.

5.6.2 Levenberg–Marquardt iteration

In general, the inversion of Eq. (5.1) represents a highly non-linear problem.
Therefore, if the first guess state vector xo is too far from the true state vector
the linear approximation in Eq. (5.99) may be poor. In that case, the inversion of
the linearized forward model in Eq. (5.99) may result in a new state vector that
yields a higher χ2 difference between forward model F(xn+1) and measurement
y than the first guess state vector xo, i.e. a step has been taken in the wrong
direction. In order to prevent the inversion from taking a large step away from
the minimum χ2, we use the Levenberg–Marquardt method (Levenberg, 1944;
Marquardt, 1963), which minimizes the step size between two iteration steps
in addition to minimizing the difference between linearized forward model and
measurement. Thus, for the first few iteration steps we replace our original cost
function (5.101) by the Levenberg–Marquardt cost function, given by

x̂n+1(ν) = min
x

(
||(Kx − ỹ)||2 + ν ||Γ(x − xn)||2

)
, (5.114)

where the subscripts n and n + 1 denote the current and next iteration step,
respectively, ν is a parameter that controls the step size, and Γ is the same
weighting factor matrix as in Eq. (5.101). Ideally, ν should be chosen such that
the step taken yields an optimal improvement in χ2 between F(xn+1) and y.
However, in order to find that value of ν, it is necessary to evaluate χ2 for
a large number of trial values of ν, which requires a lot of computation time
because for each trial ν a new forward model calculation is required. A more ef-
ficient application of Eq. (5.114) was proposed by Press et al. (1992). They start
with a certain first guess value for ν and evaluate for that ν the χ2 between
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F(xn+1) and y. If this χ2 is smaller than the χ2 of the previous iteration step,
they proceed the iteration with xn+1 and decrease ν by a certain factor. If χ2

is larger than the χ2 of the previous iteration step, they proceed the iteration
with xn and increase ν by a certain factor. For our aerosol retrieval problem also
this more efficient method still requires a large number of iteration steps (often
more than 40 iteration steps are needed). Therefore, we developed a method
to speed up the iteration process considerably. Here, for each iteration step we
solve Eq. (5.114) for many different (say 50) values of ν. Each ν results in a dif-
ferent retrieved state vector xn+1. For all these retrieved state vectors we use an
approximate forward model to evaluate (an approximation of) the χ2 difference
between forward model F(xn+1) and measurement y. This approximate forward
model makes use of the fact that the forward model is more linear as a function
of the discretized size distribution than as a function of reff and veff , viz.

Fappr(x) = F(xn) +
2∑

j=1

N∑
i=1

∂F
∂ni

∆ni +
∂F

∂xrest
∆xrest. (5.115)

Here, ni is the value of the size distribution in size bin i, ∆ni is a change in
ni caused by a change in reff and veff , and xrest is the part of the state vector
not including reff and veff . Furthermore, the summation over j represents the
summation over the two modes of the size distribution and the summation over
i from 1 to N represents the summation over all size bins. The forward model
Fappr of Eq. (5.115) is a better approximation of the true forward model F
than the linear approximation of Eq. (5.2), because the ∆ni in Eq. (5.115) are
calculated using the non-linear expression for the size distribution ni(reff , veff).
Using, the approximate forward model (5.115) we efficiently estimate the value
νopt which yields optimal improvement in χ2, and use the corresponding state
vector xn+1(νopt) to proceed the iteration.

We follow the iteration process described above until χ2 becomes smaller
than a certain threshold. For values of χ2 below this threshold we assume that
the problem has become sufficiently linear for us to be able to replace Eq. (5.114)
by the original cost function Eq. (5.101). In the final iteration step, this mini-
mization yields the final solution of our retrieval problem with the corresponding
regularization and error analysis.

5.7 Application to GOME-2

In this section we apply the retrieval concept presented in the previous subsec-
tions to synthetic measurements of intensity and polarization of the Polarization
Measuring Device (PMD) of GOME-2. The first of three GOME-2 satellite in-
struments has been launched in October 2006 on the Eumetsat’s Metop satellite.
In total, a GOME-2 measurement series will be performed till 2020. Here, we
will first demonstrate that the proposed retrieval concept is well suited to solve
the non-linear aerosol retrieval problem. Furthermore, we will demonstrate that
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a linear error mapping procedure, as used in Eq. (5.110), allows a sound er-
ror analysis for the application of aerosol retrieval. Finally, we will present an
analysis of the information content of GOME-2 measurements of intensity and
polarization, including a comparison with the information content of intensity
-only retrievals from the GOME-2 PMD.

5.7.1 GOME-2 measurements

The PMD of GOME-2 measures the 312–800 nm spectral range using 200 de-
tector pixels with a spectral resolution of 2.8 nm at 312 nm and about 40 nm at
800 nm. The components of the intensity polarized parallel and perpendicular to
the optical plane are measured simultaneously. These components are denoted
by I l

i and Ir
i , respectively, for detector pixel i. The design of the PMD was driven

by the optical identity of the l- and r-channels. Given the need of a lightweight
instrument, a prism spectrometer was chosen instead of a more complex grating
solution. The measurement I l

i is simulated by

I l
i =

∫ ∞

0
dλ Si(λ) I l(λ), (5.116)

where the integration over wavelength λ describes the effect of a Gaussian spec-
tral response function S(λ), where I l(λ) denotes the l-component of the intensity
at the entrance of the instrument. The measurement Ir

i is simulated in the same
manner as in Eq. (5.116). From the measured intensities I l

i and Ir
i the Stokes

parameters Ii and Qi can be obtained, viz.,

Ii = I l
i + Ir

i , (5.117)
Qi = I l

i − Ir
i . (5.118)

The simulated values of Ii and Qi are superimposed by a random Gaussian
noise. Here, we calculated the contributions of photon-shot-noise and detector-
noise using the transmission properties of GOME-2, known from the on-ground
calibration. However, we believe that considering only these two error sources
an unrealistically positive retrieval diagnose will be obtained, because the mea-
surement possibly also contains other errors which may introduce a random-like
structure, such as errors due to spatial aliasing, unknown spectral features in-
troduced by the diffuser plate, and spectral calibration errors. Also the forward
model may contain random-like errors, for example due to errors in accounting
for molecular absorption, the description of underlight, the assumed distribution
of surface slopes of the oceanic waves, and the prediction of whitecap coverage
from wind speed. Therefore, in addition to the contributions of photon-shot-
noise and detector-noise, a noise floor of 1% is added to the simulations of Ii

and Qi, to account for such errors.
Due to limitations in the GOME-2 data rate the information of the 200

detector pixels has to be co-added onboard to form 15 programmable bands.
The expected wavelength ranges of these bands are denoted in Table 5.1. For
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Table 5.1. Probable PMD band selection for GOME-2 (Hasekamp et al., 2004a). The
wavelength range is indicated by the center wavelengths of the first and last PMD
pixel, respectively, not including the Full Width at Half Maximum (FWHM) of the slit
function, which is shown in the last column

Band no. Wavelength range (nm) No. of pixels FWHM (nm)

1 spare – –
2 311.8–314.3 5 3.1
3 316.9–318.8 4 3.3
4 321.5–329.3 12 3.5
5 330.8–334.6 6 3.8
6 336.2–340.0 24 4.8
7 361.0–377.9 20 4.8
8 380.3–383.9 4 6.1
9 399.8–428.0 19 7.8

10 435.1–493.5 23 10.2
11 495.5–552.4 23 12.5
12 567.9–598.0 5 25.2
13 600.0–660.0 11 30.0
14 743.1–766.6 3 38.5
15 783.6–792.4 2 43.9

aerosol retrieval it is anticipated that band 6–15 will be used. The intensity Ipmd
for a given PMD band is given by

Ipmd =
N∑

i=1

Ii, (5.119)

where the summation in Eq. (5.119) describes the co-adding over a number of
N detector pixels. The Stokes parameter Qpmd is obtained in the same manner.
The standard deviation σpmd for the Gaussian error on Ipmd or Qpmd is given
by

(σpmd)2 =
1
N

(
N∑

i=1

(σi)2
)

, (5.120)

where σi is the standard deviation for a detector pixel.
In this study we consider retrievals using intensity as well as polarization

measurements and retrievals using only intensity measurements. For the latter
retrievals we also use the PMD spectral bands of Table 5.1. In this comparison we
want to avoid differences in information content due to the fact that adding an
extra set of intensity measurements improves the signal-to-noise ratio by a factor√

2. Therefore, for the calculation of the measurement error covariance matrix
for the intensity -only retrievals we used the signal-to-noise ratio corresponding
to a double set of intensity measurements.
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5.7.2 Retrieval results

The retrieval procedure described in this chapter is tested on a set of 100 syn-
thetic GOME-2 PMD measurements of intensity and polarization, created for
randomly chosen aerosol parameters within a specified range. The chosen ranges
for the different parameters were: 0.1–0.2 µm for reff of the small mode, 0.65–
3.40 µm for reff of the large mode, 0.16–0.65 for veff of the small mode, 0.5–0.9
for veff of the large mode, 1.4–1.6 for mr, 5 · 10−7–0.02 for |mi|, and aerosol
columns for both modes corresponding to an optical thickness at 550 nm in the
range 0.05–0.5. The oceanic pigment concentration ranged from 0.5–2 mg/m3,
whereas the height zb of the layer where the bulk of the aerosols is located (see
Eq. 5.98) was kept fixed at 2 km.

In all cases the iteration converged to a stable solution and also the χ2 dif-
ference between forward model and measurement was close to 1 in all cases.
Figure 5.4 shows the retrieved optical thickness (i.e. derived from the retrieved
parameters) versus the true optical thickness at 550 nm. It can be seen that the
retrieved optical thickness corresponds well to the true optical thickness. In gen-
eral, the agreement is within 5%. This example indicates that the implemented
retrieval approach is suited for aerosol retrieval.

Fig. 5.4. Retrieved optical thickness versus true optical thickness at 550 nm for 100
synthetic retrievals.
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An error analysis based on a linearized forward model, as is performed in
Eq. (5.110), is only valid if the forward model is (approximately) linear within
the error range. In order to test if a sound error analysis can be performed using
a linearized forward model, we investigate whether the differences between the
retrieved state vector and the true state vector are consistent with the retrieval
noise covariance matrix calculated by Eq. (5.110). In order to exclude the effect of
the a priori state vector from the comparison we replace xa by xtrue in the term
(I−A)xa in Eq. (5.107) for the final iteration step. If the differences between the
retrieved state vector and the true state vector are consistent with the retrieval
noise covariance matrix (5.110), then the distribution of (xr

i −xt
i)/σi, where xr

i is
the ith element of the retrieved state vector, xt

i is the corresponding true value,
and σi the standard deviation that follows from Eq. (5.110), is given by the
standard Gaussian distribution

f(y) =
exp(−y2/2)√

2π
. (5.121)

For the retrievals on the 100 synthetic measurements described above, the
corresponding distribution is shown in Fig. 5.5. The distribution shown contains
the values (xr

i −xt
i)/σi for all state vector elements. From Fig. 5.5 it follows that

the distribution of the retrieved aerosol parameters reproduces the standard
Gaussian distribution well. This demonstrates that the linear approximation of
Eq. (5.110) is valid for the calculation of the retrieval noise covariance matrix.
So, a linear error mapping procedure can be used to investigate the retrieval
capabilities of a given instrument concept, without doing a full iterative retrieval.
The linearized radiative transfer model described in this chapter is a powerful
tool for this purpose.

5.7.3 Information content

We investigated the information content of GOME-2 measurements using lin-
earized radiative transfer calculations for the two aerosol types in Table 5.2,
where the optical thickness at 550 nm τ550 = 0.3. Here, aerosol type A corre-
sponds to biomass-burning aerosols and type B corresponds to oceanic aerosols.
Figure 5.6 shows the DFS as a function of viewing zenith angle (VZA) for a solar
zenith angle (SZA) of 40◦ and a relative azimuth angle of 60◦ (positive VZA)
or −120◦ (negative VZA), for retrievals using intensity as well as polarization
measurements (left panel) and for retrievals using only intensity measurements
(right panel). From this figure it follows that for retrievals using intensity as
well as polarization measurements the DFS is in the range 6–8 which is 1–4 de-
grees higher than for retrievals using only intensity measurements. So, the use
of polarization measurements significantly improves the information content.

In order to interpret by which parameters the DFS is mainly determined, we
show in Fig. 5.7 the derivatives of the retrieved parameters with respect to their
a priori values for the biomass-burning aerosol type. Here, if for a parameter
∂x/∂xa = 1, this parameter is fully determined by its a priori value, whereas if
∂x/∂xa = 0 the parameter is not influenced by its a priori value at all. Here, it
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Fig. 5.5. Distribution of (xr
i − xt

i)/σi for the 100 retrievals on synthetic GOME-2
measurements (solid line). N/Ntot indicates the number of points in a certain size
bin normalized to the total number of points. The standard Gaussian distribution of
Eq. (5.121) is given by the dashed line. The distribution contains 101 bins between −8
and 8.

Table 5.2. Aerosol types used to create synthetic measurements of intensity and polar-
ization. The aerosol types are adopted from Torres et al. (2001). Type A corresponds to
biomass-burning aerosols and type B corresponds to oceanic aerosols. See Appendix B
for definitions of reff and veff . fl denotes the fraction of large mode particles. Concerning
the aerosol altitude distribution of Eq. (5.98), zb = 2 km and zt = 10 km

Type rs
eff vs

eff rl
eff vl

eff fl τ l
550/τ tot

550 mr mi τ350 τ550 ω350

A 0.119 0.174 2.671 0.704 2.05 · 10−4 0.087 1.50 −0.02 0.657 0.300 0.892
B 0.105 0.651 0.840 0.651 1.53 · 10−2 0.851 1.40 −5 · 10−8 0.336 0.300 1.000

is important to note that due to our choice of the matrix Γ in Eq. (5.101) we
force the aerosol columns of both modes to be fully independent of their a priori
values, i.e. ∂x/∂xa = 0 for these parameters. Therefore, these parameters are not
included in Fig. 5.7. It follows from Fig. 5.7 that the polarization measurements
mostly add information on the effective variance of the small mode, the imagi-
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Fig. 5.6. Degrees of Freedom for Signal (DFS) for retrievals from GOME-2 PMD
intensity and polarization measurements (left panel) and for retrievals using only in-
tensity measurements (right panel). The two aerosol types of Table 5.2 are used. The
DFS is shown as a function of viewing zenith angle (VZA) for a solar zenith angle of
40o and a relative azimuth angle ϕo −ϕv = 60o for positive VZA and ϕo −ϕv = −120o

for negative VZA. An oceanic pigment concentration of 1 mg/m3 was used for the
simulations.

nary part of the refractive index, and the height zb of the layer where the bulk
of the aerosols is located. Furthermore, significant additional information can
be retrieved on the effective radius of the small mode and the oceanic pigment
concentration. Both retrievals contain little information on the size distribution
parameters of the large mode. This can be explained by the fact that for the
biomass-burning aerosol type the contribution of the large mode to the total
optical thickness is relatively small. In contrast, the oceanic aerosol type (not
shown) is dominated by the large mode. Therefore, for this aerosol type more
information is available on the effective radius of the large mode, while the ef-
fective radius of small mode depends stronger on a priori information. However,
the effective variance of both modes strongly depends on a priori for the oceanic
aerosol type.

From Fig. 5.7 we conclude that the use of polarization measurements makes
it possible to retrieve information on aerosol size and refractive index that can-
not be retrieved using only intensity measurements. This can be explained by
the characteristic sensitivity of polarization properties of light to aerosol micro-
physical properties, as shown, for example, by Hansen and Travis (1974). Fur-
thermore, as follows from Fig. 5.7, polarization measurements allow the retrieval
of information on aerosol height. This information mainly comes from measure-
ments at wavelengths below about 450 nm, where the Rayleigh scattering optical
thickness is relatively large. Since most Rayleigh scattering takes place low in
the atmosphere, the Rayleigh scattering signal is more strongly attenuated if
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Fig. 5.7. Derivatives of retrieved values with respect to their a priori values for the
biomass-burning aerosol type (A), as a function of viewing zenith angle. Other angles
as in Fig. 5.6.
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the aerosols are located higher in the atmosphere. So, the degree of polarization
of the backscattered light becomes lower for increasing aerosol height, because
Rayleigh scattering generally causes a higher degree of polarization than aerosol
scattering. For the oceanic aerosol type, there is significantly less information
available on aerosol height (not shown) then for the biomass-burning aerosol
type, because for the oceanic aerosol type the aerosol optical thickness at short
wavelengths is much smaller than for biomass-burning aerosols. In addition to
the aerosol parameters, the oceanic pigment concentration also can be retrieved
using GOME-2 intensity and polarization measurements. This is due to the char-
acteristic spectral signature of oceanic pigment.

Figure 5.8 shows for aerosol type A the total retrieval error (retrieval noise
and regularization error) on the optical thickness at 350 nm and 550 nm, respec-
tively, for retrievals using intensity and polarization measurements and retrievals
using only intensity measurements. It can be seen that for the retrievals using
intensity and polarization measurements, the optical thickness error shows a
distinct maximum around a VZA of 20◦. The reason for this is that at these
geometries the sensitivity of Stokes parameter Q to atmospheric properties is
rather low, which means that here the retrievals rely for a large part on intensity
measurements. This strong dependence on viewing geometry demonstrates that
the aerosol information retrieved using single-viewing-angle polarization mea-
surements is for some geometries less useful than for other geometries. These
geometries are well defined and the corresponding aerosol retrieval products
should be labeled as less reliable. Away from this maximum, the optical thick-
ness error is around 0.025 (3.7%) at 350 nm and around 0.017 (5.7%) at 550 nm.
The optical thickness errors for retrievals using only intensity measurements are

Fig. 5.8. Total retrieval error on the retrieved optical thickness at 350 nm (left panel)
and 550 nm (right panel), as a function of viewing zenith angle. Other angles as in
Fig. 5.6.
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a factor 2–7 higher. The increase in total optical thickness error mainly comes
from the regularization error, which means that optical thickness retrievals from
only intensity measurements are very sensitive to a priori information on aerosol
size distribution and refractive index. So, the additional information on aerosol
size distribution and refractive index (see Fig. 5.7) that can be retrieved includ-
ing polarization measurements, is not only important information on its own,
but is also essential if a reliable optical thickness retrieval is to be obtained.

Figure 5.9 shows the total retrieval error on the aerosol single scattering
albedo ω350 at 350 nm, for retrievals using intensity as well as polarization mea-
surements, and retrievals using only intensity measurements. Here, we use a
wavelength of 350 nm because information about aerosol single scattering albedo
mainly comes from shorter wavelengths due to interaction with Rayleigh scat-
tering (Torres et al., 1998). For retrievals using intensity as well as polarization
measurements, the total error on the single scattering albedo is mostly below
0.015. For intensity -only retrievals the total error on ω350 is about a factor 2–4
larger than for retrievals using polarization measurements. So, the retrieval of
single scattering albedo also benefits significantly from including polarization
measurements.

To summarize, multi-wavelength single-viewing-angle measurements of inten-
sity as well as polarization in the range 340–800 nm contain valuable information
on aerosol size, refractive index, spectral optical thickness, and UV-single scatter-
ing albedo. These aerosol characteristics are of essential importance for climate
research. Using only intensity measurements in the same spectral range, signif-
icantly less information on microphysical aerosol properties can be retrieved,

Fig. 5.9. Total retrieval error on the retrieved single scattering albedo at 350 nm as a
function of viewing zenith angle. Other angles as in Fig. 5.6.



196 Otto P. Hasekamp and Jochen Landgraf

leading to (much) larger errors on the corresponding retrieved optical thickness
and single scattering albedo. These conclusions have also been tested for other
aerosol types, and similar results were obtained. In addition, multi-viewing-angle
measurements will provide information on the aerosol phase matrix which in turn
will provide additional constraints on microphysical aerosol properties and on
surface reflectance properties.

5.8 Conclusions

The analytical linearization of vector radiative transfer with respect to physical
aerosol properties and its use in satellite remote sensing have been reviewed. The
linearization consists of two steps. The first step is the calculation of the deriva-
tives of the four Stokes parameters at the top of the atmosphere with respect to
scattering coefficient, absorption coefficient, and the expansion coefficients of the
scattering phase matrix. These derivatives are calculated analytically employing
the forward-adjoint perturbation theory. Here, general expressions are presented
that can be applied for the linearization of any vector radiative transfer model
that calculates the internal radiation field in the model atmosphere. The second
step is the calculation of the derivatives of the scattering coefficient, absorption
coefficient, and the expansion coefficients of the scattering phase matrix, with
respect to the real and imaginary part of the refractive index, and parameters
describing the size distribution (e.g. effective radius, effective variance). These
derivatives are analytically calculated following Mie theory. The developed lin-
earization approach has been implemented in a Gauss–Seidel vector radiative
transfer model. The linearized radiative transfer model has been incorporated
in a retrieval algorithm based on the Phillips–Tikhonov regularization method
in combination with the Levenberg–Marquardt iterative method. This retrieval
algorithm aims to retrieve microphysical aerosol parameters corresponding to a
bi-modal aerosol size distribution. Additionally, the oceanic pigment concentra-
tion and information on aerosol height are retrieved from the measurement. We
used synthetic GOME-2 measurements of intensity and polarization to demon-
strate that the developed iterative retrieval approach based on linearized ra-
diative transfer is well suited to solve the non-linear aerosol retrieval problem.
Furthermore, we demonstrated that a linear error mapping procedure can be
used to perform a solid error analysis, without doing a full iterative retrieval.

Finally, we presented and overview of the information content of GOME-2
measurements of intensity and polarization. Here, we considered the retrieval of
nine aerosol parameters corresponding to a bi-modal aerosol size distribution:
the column integrated aerosol number concentration of both modes, the effec-
tive radius of both modes, the effective variance of both modes, the real- and
imaginary part of the refractive index, and the height of the layer where the
bulk of the aerosols is located. In addition to the nine aerosol parameters we
also considered the oceanic pigment concentration as an unknown parameter. It
is demonstrated that for this retrieval setup the DFS is in the range 6–8. Here,
the aerosol loading of both modes, the effective radius of at least one mode, the
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real and imaginary part of the refractive index, the height of the layer where
the bulk of the aerosols is located, and the oceanic pigment concentration can
for most viewing geometries be retrieved from the measurement with negligible
dependence on a priori information.

For retrievals that only use intensity measurements the DFS is significantly
less than for retrievals also using polarization measurements, namely in the range
3.5–5. For these retrievals no significant information on aerosol imaginary refrac-
tive index, effective variance, and aerosol height can be retrieved. Furthermore,
the information on effective radius, real part of the refractive index, and oceanic
pigment concentration is much more affected by a priori information than re-
trievals that include polarization measurements.

To conclude, the results of this chapter demonstrate that a linearized radia-
tive transfer model as presented here provides a powerful tool for efficiently solv-
ing the aerosol retrieval problem, and additionally for a solid error analysis. Using
this tool, we showed that multi-wavelength single-viewing-angle measurements
of intensity as well as polarization in the range 340–800 nm contain valuable
information on aerosol size, refractive index, spectral optical thickness, and UV-
single scattering albedo. Using only intensity measurements in the same spectral
range significantly less information on microphysical aerosol properties can be
retrieved, leading to (much) larger errors in the corresponding retrieved optical
thickness and single scattering albedo. The retrievals can be further improved
using multiple-viewing-angle measurements and highly spectrally resolved mea-
surements in absorption bands of well mixed atmospheric gases, such as oxygen.

Appendix A: The Mie coefficients and their derivatives

The Mie coefficients an and bn are calculated using the method of de Rooij
and van der Stap (1984). Here, we will summarize the relevant formulas and
for further details we refer to the corresponding paper. Furthermore, we give
expressions for the derivatives of an and bn with respect to the real and imaginary
part of the refractive index, used in section 5.4.2. The Mie coefficients are given
by (see, for example, Deirmendjian (1969)):

an =
(Dn(z)/m + n/x) Ψn(x) − Ψn−1(x)
(Dn(z)/m + n/x) ζn(x) − ζn−1(x)

, (5.122)

bn =
(mDn(z) + n/x) Ψn(x) − Ψn−1(x)
(mDn(z) + n/x) ζn(x) − ζn−1(x)

, (5.123)

where m = mr + imi is the complex refractive index, x is the size parameter
2πr/λ, and z = mx. Furthermore,

Ψn(x) = xjn(x), (5.124)
ζn(x) = Ψn(x) + iχn(x), (5.125)

with
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χn(x) = −xyn(x), (5.126)

where jn(x) and yn(x) are the spherical Bessel functions of the first and second
kind, respectively. Dn(z) is the only function that depends on refractive index
and is given by

Dn(z) =
d

dz
ln Ψn(z) = −n

z

Ψn−1(z)
Ψn(z)

. (5.127)

The functions Ψn(x) and χn(x) and Dn(z) are all calculated using recurrence
relations. Here, χn(x) is calculated by upward recursion using the recurrence
relation

χn+1(x) =
2n + 1

x
χn(x) − χn−1(x), (5.128)

with initial functions

χ−1(x) = sinx, χ0(x) = cos x. (5.129)

Ψn(x) is calculated using downward recursion:

Ψn(x) = rn(x) Ψn−1(x), (5.130)

where

rn(x) =
[
2n + 1

x
− rn+1(x)

]−1

. (5.131)

The recursion is started at n = N1(x) where

N1(x) = x + 4.05x1/3 + 60, (5.132)

and rN1(x) = 0 (de Rooij and van der Stap, 1984).
Dn(z) is calculated using the following downward recursion relation:

Dn(z) =
n + 1

z
−
(

Dn+1(z) +
n + 1

z

)−1

, (5.133)

where the recursion is started at n = N2(z) with

N2(z) = z + 4.05z1/3 + 10, (5.134)

and DN2(z) = 0 (de Rooij and van der Stap, 1984).
The derivatives of an and bn with respect to the real and imaginary part of

the the refractive index are given by

[an]
′

=

(
[Dn(z)]

′
/m − Dn(z)/m2

)
(Ψn−1ζn − Ψnζn−1)

[(Dn(z)/m + n/x) ζn(x) − ζn−1(x)]2
, (5.135)

[bn]
′

=
m[Dn(z)]

′
(Ψn−1ζn − Ψnζn−1)

[(mDn(z) + n/x) ζn(x) − ζn−1(x)]2
, (5.136)

where the prime indicates the derivative with respect to either mr or imi. Here,
it is important to note that in section 5.4.2 we use the derivatives with respect
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to mi which follow directly from the here given derivatives with respect to imi.
The derivative [Dn(z)]

′
is found by backward recursion via

[Dn(z)]′ =
−x(n + 1)

z2 +
(

[Dn+1(z)]
′
+

−x(n + 1)
z2

) (
Dn+1(z) +

n + 1
z

)−2

,

(5.137)
starting the recursion at N2 with [DN2(z)]′ = 0.

Appendix B: Aerosol and ocean properties

B.1 Aerosol size distribution

For all simulations in this chapter we assume that the aerosol size distribution
is bi-modal, where the size distribution n for each mode is given by a lognormal
function

n(r) =
1√

2π σg r
exp

[−(ln r − ln rg)2/(2σ2
g)
]
, (5.138)

where r describes particle radius,

ln rg =
∫ ∞

0
ln r n(r) dr, (5.139)

and
σ2

g =
∫ ∞

0
(ln r − ln rg)2 n(r) dr. (5.140)

As shown by Hansen and Travis (1974) it is useful to characterize (a mode
of) the size distribution by the effective radius reff and effective variance veff ,
because these parameters are relatively independent from the actual shape of
the distribution. Here,

reff =
1
G

∫ ∞

0
rπr2n(r) dr, (5.141)

and
veff =

1
Gr2

eff

∫ ∞

0
(r − reff)2πr2n(r) dr, (5.142)

where G is the geometrical cross-section. We use the superscripts l and s to refer
to the small and large mode of the size distribution, respectively.

B.2 Ocean description

For the retrieval simulations in this chapter, the lower boundary of the model
atmosphere is characterized by the reflection matrix of the ocean. The ocean
reflection can be described by three contributions (see, for example, Chowd-
hary (1999) and references therin): (1) Fresnel reflection on the oceanic waves.
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This contribution is mainly determined by the wind speed W . (2) Scattering
inside the ocean body called underlight. In this chapter we restrict ourselves to
the open ocean (so called ‘case-1 waters’ (Morel and Prieur, 1977)) for which
the reflection due to underwater scattering is predominantly determined by the
concentration of phytoplankton and its derivative products, referred to as the
oceanic pigment concentration Cpig. (3) Reflection by oceanic foam, which de-
pends on the foam albedo Afm (see, for example, Koepke (1984), Frouin et al.
(1996) and Kokhanovsky (2004)) and the fraction of the ground pixel that is
covered by foam, which depends on the wind speed. So, the total ocean reflec-
tion depends mainly on the wind speed, the oceanic pigment concentration, and
the foam albedo.

For the simulations in this chapter, the Fresnel reflection on the waves is
calculated using the method of Mishchenko and Travis (1997), assuming the
wind speed dependent distribution of surface slopes proposed by Cox and Munk
(1954). Here, we used a windspeed W = 7 m/s throughout this chapter. For
the foam albedo Afm we assume a fixed value of 0.2, which is close to the
value proposed by Koepke (1984) for the visible spectral range. For the wind
speed dependent fraction lfm of the ground pixel that is covered by foam we use
lfm = 2.95 × 10−6 W 3.52 (Monahan and O’Muircheartaigh, 1980).

The underlight contribution is described using a Lambertian albedo that
depends on the oceanic pigment concentration, using the dependence given by
Morel (1988) and Morel and Gentili (1993) (an improved model has been pub-
lished by Morel and Maritorena (2001)), in combination with the data of Smith
and Baker (1981). So, bi-directional effects and polarization are neglected us-
ing this simplified description of underlight. Since the underlight contribution
is largest below 500 nm, the errors in the underlight contribution also will be
largest for these wavelengths. However, the effect of errors in the ocean descrip-
tion on the intensity vector at the top of the atmosphere will be relatively small,
since the atmospheric contribution to the intensity vector at the top of the at-
mosphere is much larger than the oceanic contribution at these wavelengths.
The neglect of bi-directional effects can cause an error in the underlight con-
tribution of roughly 20% directly above the ocean surface (Morel and Gentili,
1993; Chowdhary, 1999) but is in general smaller than 1.5% at the top of the
atmosphere for wavelengths below 500 nm. The neglect of polarization in the
underlight contribution causes for some geometries maximum errors of 1–2%
in Stokes parameter Q at the top of the atmosphere for realistic ocean models
(Chowdhary, 1999). We expect that the simplified description of the underlight
contribution does not significantly affect the sensitivity study results of this
chapter. However, for aerosol retrieval from real measurements it is worthwhile
to consider a more advanced ocean description (Chowdhary et al., 2005). Also
for the retrieval of aerosol properties over coastal waters a more advanced ocean
description should be considered.
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