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7.1 Introduction

Light scattering has an increasing importance in modern technologies. Examples
are characterization of particles in natural or technical environments, surface
characterization, biomedical sensing and nanotechnology. As a consequence, the
development of accurate and fast methods devoted to the numerical simulation
of electromagnetic and light scattering has become of fundamental importance.

There is a long interest in light scattering computations for nonspherical
natural or artificial particles. To perform scattering computations the T-matrix
method is considered of advantage because in the T-matrix all information on the
polarization scattering effects is included. Thus from a precomputed T-matrix a
scattering problem under slightly different conditions of incident wave orienta-
tion or scattering angles can quite easily be computed. There are also efficient
ways to compute orientation-averaged scattering quantities from a precomputed
T-matrix.

Although there has been much development in the T-matrix method over
the last two decades there still have been problems with scattering computations
for some types of particles. These include arbitrarily shaped nonaxisymmetric
particles, particles having a large aspect ratio such as finite fibres or flat discs,
and compound particles consisting of regions of different refractive indices. Other
problems have been with chiral or optically anisotropic particles.

In the recent development of the Null-Field Method with Discrete Sources
(NFM-DS) all of the method problems mentioned have been solved. In the stan-
dard T-matrix method a single system of spherical vector wave functions is used
for internal field expansions. In the NFM-DS different kinds of discrete sources
having different positions can be used for field expansion and this helps to over-
come the stability problems with the standard method.

In this chapter the development of the Null-Field Method with Discrete
Sources will be reviewed and some exemplary scattering results will be pre-
sented to demonstrate the capabilities of the concept. Recent developments will
be mentioned.
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First we give a short review of the state of the art of the Discrete Sources
Method as well as the T-Matrix Method. Next we will introduce the Null-Field
method with Discrete Sources as an extension of these two methods.

7.2 Discrete Sources Method

The Discrete Sources Method (DSM) [1] and related methods are widely used
techniques for the numerical solution of elliptic boundary value problems includ-
ing electromagnetic scattering.

The main idea of the DSM consists of approximating the solution of the
problem by a linear combination of discrete sources. This discrete sources are
the fundamental solution of the differential equation of the problem. The intro-
duction of the Discrete Sources Method is generally attributed to Kupradze and
Aleksidze [2].

Since that time the method has been applied in various fields such as acous-
tics, elasticity theory, electromagnetism, fluid dynamics, geophysics and solid
mechanics. For a full theoretical outline of the method we refer the interested
reader to the book by Doicu, Eremin and Wriedt [3]. An excellent review of
the DSM and related methods for elliptic boundary value problems over recent
decades has been given by Fairweather and Karageorghis [4]. Fairweather, Kara-
georghis and Martin [5] also surveyed the DSM applications in scattering and
radiation problems. An edited volume covering different variants of this method
has been published by Wriedt [6].

The DSM method is able to solve the problem of scattering from arbitrary
shaped scatterers. Using point matching or point collocation of the boundary
condition on the surface of the scatterer the original problem is reduced to de-
termining the unknown coefficients of the discrete sources by solving a linear
system of equations. The coefficients can also be obtained by matching the fields
at the boundaries of the regions using a least squares fit of the boundary data.
In this way the scattered field can be expressed in terms of a complete set of
discrete sources.

There are various other names used for similar kind of concepts such as
Charge Simulation Method [7], Yasuura Method [8], Multiple Multipole Program
[9], Method of Auxiliary Sources [10], Discrete Singularity Method [11], Fictitious
Sources Method [12], Method of Fictitious Sources [13], Method of Fundamental
Solutions [14], and Generalized Multipole Technique [15].

The advantage of the Discrete Sources Method is that it provides a reduction
in the size of the linear system that has to be solved and thus leads to a reduction
in the computation time and memory storage.

The representation of electromagnetic fields by the use of discrete sources
placed apart from the surface of the scatterer helps to simulate scattering by
complex particles which cannot be solved using the standard T-matrix method.
These particles include elongated scatterers, flat scatterers and concave scat-
terers. Compared to the surface integral method it does not have the problems
encountered with singularities of the kernels. The method includes the possibility
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of checking the accuracy of the computational results by means of a boundary
matching error. The method also allows free choice of the kind and the location
of the discrete sources, but if optimization of the coordinates of the discrete
sources is included in the computational algorithms this would lead to a time
consuming nonlinear least-squares minimization procedure. Another advantage
of the DSM over other methods is that it does not require an elaborate dis-
cretization of the surface of the scatterer as in the Boundary Element Method
(BEM); also integrations over the particle boundary surface, as needed in the
T-matix method, are avoided.

7.3 T-matrix method

The T-matrix method is a widely used method for obtaining numerical solu-
tions to electromagnetic scattering problems. The T-matrix method found a
wide range of applications because a corresponding FORTRAN program for a
conducting scatterer had already been published in the early 1970s [16] which
was later extended by others to the dielectric case. The T-matrix method is also
called the Null-Field Method (NFM) or Extended Boundary Condition Method
(EBCM). It is based on a series of papers by Waterman [17]. An early collection
of conference papers on this method was edited by Varadan and Varadan [18].
With this method the incident, transmitted and scattered field is expanded into
a series of spherical vector wavefunctions as shown for the scattered field:

Es(x) =
∞∑

ν=1

fνM3
ν(ksx)+gνN3

ν(ksx) , (7.1)

[
fν

gν

]
= T

[
a0

ν

b0ν

]
. (7.2)

In this equation N3
ν and N3

ν represent the rediating spherical vector wavefunc-
tions. The expansion coefficients of the scattered field fν , gν are related to the
coefficients of the incident field a0

ν , b
0
ν by the T-matrix (transition matrix).

The elements of the T-matrix are obtained by numerical integration. For an
arbitrarily shaped particle lacking rotational symmetry a surface integral has
to be computed. As this is computationally expensive, most implementations of
the method are restricted to axisymmetric scatterers. In this case line integrals
have to be computed. Nevertheless, there are some papers in which the T-matrix
method has been applied to arbitrarily shaped scatterers. Early scattering com-
putation for nonaxisymmetric scatterers using the T-matrix method have been
done by P. W. Barber in his Ph.D. thesis [19] and by Schneider and Peden [20],
both presenting results for ellipsoids. Wriedt and Doicu [21] presented computa-
tional examples with results of scattering by a dielectric cube of size parameter
2. A 3D variant of the T-matrix method has also been developed by Laitinen
and Lumme [22] and by Kahnert et al. [23] both presenting scattering results
for rounded cubes and another implementation was published by Havemann and
Baran [24] giving results for hexagonal ice crystals.
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A review of the status of the T-matrix approach up to 1996 has been pub-
lished by Mishchenko, Travis and Mackowski [25]. A more recent review can
be found in the book by Mishchenko, Hovenier and Travis [26]. The T-matrix
method is also subject of books by Mishchenko et al. [27] and Borghese et al.
[28]. A database of the literature on the T-matrix method has recently been
compiled by Mishchenko et al. [29].

The notion of a T-matrix of a single scatterer makes it possible to solve
problems of scattering from an arbitrary number of homogeneous objects also
in the vicinity of a plane surface through the use of the T-matrix formalism.
This method fully takes into account the interaction between the objects from
multiple scattering and can deal with a large number of scattering particles. This
feature, computing the T-matrix for a group of scatterers from the T-matrix of
each constituent, makes the method very powerful and is considered its main
advantages over other methods.

It has been found that the numerical performance of the T-matrix method is
strongly dependent on the shape of the scatterer. It tends to degrade as the shape
deviates from a sphere. An efficient approach for overcoming the numerical-
instability problem in computing the T-matrix for highly nonspherical particles
is the Null-Field Method with Discrete Sources, which is introduced in the next
section.

7.4 Null-Field method with Discrete Sources

The Null-Field Method with Discrete Sources (NFM-DS) was originally devel-
oped to solve the stability problems in the standard T-matrix method with
elongated and flat particles.

In this section we would like to outline the basics of the Null-field Method
with Discrete Sources [3]. Let us consider a three-dimensional space D consisting
of the union of a closed surface S, its interior Di and its exterior Ds. We denote
by kt the wave number in the domain Dt, where kt = k

√
εtµt, k = ω/c, t = s, i

and εt s the permeability, µt is the permitivity.
The transmission boundary-value problem can be formulated as follows. Let

E0,H0 be an entire solution to the Maxwell equations representing an incident
electromagnetic field. Find the vector fields, Es,Hs ∈ C1(Ds) ∩ C(Ds) and
Ei,Hi ∈ C1(Di) ∩ C(Di) satisfying the Maxwell’s equations

∇ × Et = jkµtHt ,
∇ × Ht = −jkεtEt ,

(7.3)

in Dt, where t = s, i; j =
√

(−1) and two boundary conditions:

n × Ei − n × Es = n × E0 ,
n × Hi − n × Hs = n × H0 ,

(7.4)

on S, where n is the outward directing normal to the boundary. In addition,
the scattered fields Es,Hs must satisfy the Silver–Müller radiation condition
uniformly for all directions x/x.
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For solving the transmission boundary-value problem in the framework of the
NFM-DS the scattering object is replaced by a set of surface current densities
e and h, so that in the exterior domain the sources and fields are exactly the
same as those existing in the original scattering problem. The entire analysis can
conveniently be broken down into the following three steps:

(I) A set of integral equations for the surface current densities e and h is
derived for a variety of discrete sources. Physically, the set of integral equations
in question guarantees the null-field condition withinDi. It is noted that localized
and distributed vector spherical functions, magnetic and electric dipoles or vector
Mie-potentials can be used as discrete sources. Essentially, the NFM-DS consists
in the projection relations:

∫

S

[
(e − e0) · Ψ3

ν + j

√
µs

εs
(h − h0) · Φ3

ν

]
dS = 0

∫

S

[
(e − e0) · Φ3

ν + j

√
µs

εs
(h − h0) · Ψ3

ν

]
dS = 0, ν = 1, 2, . . .

(7.5)

where e0 = n × E0 and h0 = n × H0 are the tangential components of the inci-
dent electric and magnetic fields. The set

{
Ψ3

ν ,Φ
3
ν

}
ν=1,2,...

consists of radiating
solutions to Maxwell equations and depends on the system of discrete sources
which is used for imposing the null-field condition. Actually, this set together
with the set of regular solutions to Maxwell equations

{
Ψ1

ν ,Φ
1
ν

}
ν=1,2,...

stands
for

– localized vector spherical functions
{
M1,3

mn,N
1,3
mn

}
m∈Z,n≥max(1,|m|),

M1,3
mn(kx) =

√
Dmnzn(kr)

[
jm

P
|m|
n (cos θ)

sin θ
eθ − dP |m|

n (cos θ)
dθ

eϕ

]
ejmϕ ,

N1,3
mn(kx) =

√
Dmn

{
n(n+ 1)

zn(kr)
kr

P |m|
n (cos θ) ejmϕer

+
[krzn(kr)]′

kr

[
dP |m|

n (cos θ)
dθ

eθ + jm
P

|m|
n (cos θ)

sin θ
eϕ

]}
ejmϕ , (7.6)

where
(
er, eθ, eϕ

)
are the unit vectors in spherical coordinates (r, θ, ϕ) , zn des-

ignates the spherical Bessel functions jn or the spherical Hankel functions of the
first kind h1

n, P |m|
n denotes the associated Legendre polynomial of order n and

m, and Dmn is a normalization constant given by

Dmn =
2n+ 1

4n(n+ 1)
· (n− |m|)!
(n+ |m|)! , (7.7)

– distributed vector spherical functions
{M1,3

mn,N 1,3
mn

}
m∈Z,n=1,2,...

:

M1,3
mn(kx) = M1,3

m,|m|+l (k(x−zne3)) , x ∈ R
3 − {zne3}∞

n=1 ,

N 1,3
mn(kx) = N1,3

m,|m|+l (k(x−zne3)) , x ∈ R
3 − {zne3}∞

n=1 ,
(7.8)
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where m ∈ Z
0, n = 1, 2, . . . ; l = 1 if m = 0 and l = 0 if m �= 0, and {zn}∞

n=1 is a
set of points located on a segment Γz of the z-axis,

– magnetic and electric dipoles
{

M1,3
ni ,N 1,3

ni

}

n=1,2,...,i=1,2
:

M1,3
ni (kx) = m(x±

n ,x, τ
±
ni), x ∈ R

3 − {x±
n }∞

n=1 ,

N 1,3
ni (kx) = n(x±

n ,x, τ
±
ni), x ∈ R

3 − {x±
n }∞

n=1 ,
(7.9)

where n = 1, 2, . . . ; i = 1, 2, . . . ; τn1 and τn2 are two tangential linear indepen-
dent unit vectors at the point xn,

m(x,y,a) =
1
k2 a(x)×∇yg(x,y,k), n(x,y,a) =

1
k

∇y × m(x,y,a), x �= y ,

(7.10)
and the sequence {x−

n }∞
n=1 is dense on a smooth surface S− enclosed in Di, while

the sequence {x+
n }∞

n=1 is dense on a smooth surface S+ enclosing Di, or finally
for the set of

– vector Mie-potentials
{M1,3

n ,N 1,3
n

}
n=1,2,...

:

M1,3
n (kx) = 1

k∇ϕ±
n (x) × x, x ∈ R

3 − {x±
n }∞

n=1 ,

N 1,3
n (kx) = 1

k∇ × M1,3
n (kx), x ∈ R

3 − {x±
n }∞

n=1 ,
(7.11)

where the Green functions

ϕ±
n (x) =g(x±

n ,x,k), n = 1, 2, . . .

have singularities {x−
n }∞

n=1and {x+
n }∞

n=1 distributed on the auxiliary surfaces S−

and S+, respectively. By convention, when we refer to the null-field equations
(7.5) we implicitly refer to all equivalent forms of these equations.

(II) The surface current densities are approximated by fields of discrete
sources. In this context let e and h solve the null-field equations (7.5) and as-
sume that the system

{
n × Ψ1

µ,n × Φ1
µ

}∞
µ=1

forms a Schauder basis in L2
tan(S).

Then there exists a sequence {aµ, bµ}∞
µ=1 such that

e(y) =
∞∑

µ=1
aµn × Ψ1

µ (kiy) +bµn × Φ1
µ (kiy) , y ∈S ,

h(y) = −j
√

εi

µi

∞∑
µ=1

aµn × Φ1
µ (kiy) +bµn × Ψ1

µ (kiy) , y ∈S .
(7.12)

We recall that a system {ψi}∞
i=1 is called a Schauder basis of a Banach space

X if any element u ∈ X can be uniquely represented as u =
∑∞

i=1 αiψi, where
the convergence of the series is in the norm of X. It is noted that in the case
of localized vector spherical functions the notion of Schauder basis is closely
connected with the Rayleigh hypothesis. This hypothesis says that the series
representation of the scattered field in terms of radiating localized vector spheri-
cal functions, which uniformly converges outside the circumscribing sphere, also
converges on S.
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(III) Once the surface current densities are determined the scattered field
outside the circumscribing sphere is obtained by using the Stratton–Chu repre-
sentation theorem. We get the series representation

Es(x) =
∞∑

ν=1

fνM3
ν(ksx)+gνN3

ν(ksx) , (7.13)

where

fν = jk2
s

π

∫

S

[
e(y) · N1

ν(ksy)+j
√
µs

εs
h(y) · M1

ν(ksy)
]

dS(y) ,

gν = jk2
s

π

∫

S

[
e(y) · M1

ν(ksy)+j
√
µs

εs
h(y) · N1

ν(ksy)
]

dS(y) .
(7.14)

Here, ν is a complex index incorporating −m and n, i.e. ν = (−m,n).

7.4.1 T-matrix computation

Now, for deriving the T-matrix, let us assume that the incident field can be
expressed inside a finite region containing S as a series of regular vector spherical
functions

E0(x) =
∞∑

ν=1

a0
νM

1
ν(ksx)+b0νN

1
ν(ksx) ,

H0(x) = −j
√
εs

µs

∞∑

ν=1

a0
νN

1
ν(ksx)+b0νM

1
ν(ksx) .

(7.15)

Then, using (7.5)–(7.15) we see that the relation between the scattered and the
incident field coefficients is linear and is given by a transition matrix T as follows

[
fν

gν

]
= T

[
a0

ν

b0ν

]
. (7.16)

Here
T = BA−1A0 , (7.17)

where A, B and A0 are block matrices written in general as

X =
[
X11

νµ X12
νµ

X21
νµ X22

νµ

]
, ν, µ = 1, 2, . . . , (7.18)

with X standing for A,B and A0. Explicit expressions for the elements of these
matrices are given by Doicu, Eremin and Wriedt [3].

It is noted that the exact, infinite T-matrix is independent of the expan-
sion systems used on S. However, the approximate truncated matrix, computed
according to

TN = BNA−1
N A0N (7.19)

does contain such a dependence.
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Energy characteristics in the far field are computed from the far-field pat-
tern EN

s0 for an unit amplitude incident electric field for p- or s-polarization.
The angle-dependent intensity function plotted in the simulation section is the
normalized differential scattering cross-section (DSCS)

σd

πa2 =

∣∣ksEN
s0

∣∣2

π |ksa|2
, (7.20)

where a is a characteristic dimension of the particle.

7.4.2 Orientation averaged scattering

To numerically compute orientation averaged scattering three integrals with re-
spect to the three Euler angles α, β, γ have to be computed. Thus the value of
interest f(α, β, γ) is integrated over all directions and polarization of the inci-
dent plane wave. The numerical procedure used to do this is based on a step
wise procedure

∫ 2π

0

∫ π

0

∫ 2π

0
f(α, β, γ) sinβ dα dβ dγ

≈ 4π3
Nα∑

nα=1

Nβ∑

nβ=1

Nγ∑

nγ=1

f(α, β, γ) sin(nβπ/Nβ)
nαnβnγ

NαNβNγ
. (7.21)

The triple integral is converted to three summations. Angle α is digitized for Nα

steps in the range (0, 2π), angle β is digitized for Nβ steps in the range (0, π),
and angle γ is digitized for Nγ steps in the range (0, 2π).

7.4.3 Computation of surface integrals

In the NFM-DS method we use a polyhedral representation of the particle shape
model of interest. This means that a particle shape is modeled by a closed
surface formed by many planar triangles. Such shapes bounded by polygons are
commonly used in computer graphics and there are different methods available
to construct a polyhedral representation of implicit or parametric surfaces. In
our case the representation by a triangular patch model should allow firstly a
correct calculation of surface integrals and secondly a graphical visualization of
the scattering particle.

Different methods are available to create a geometric surface mesh of a parti-
cle. For example the free HyperFun polygonizer software may be used for surface
mesh generation [30]. It generates VRML output of a triangular patch model for
implicit surfaces.

In the standard method to compute surface integrals a parametric equation
is used and thus an equivalent integral in polar coordinates has to be evaluated.
Thus partial derivatives of x, y, z with respect to the parametrization (in our
case parameters ϑ, ϕ) are needed which may not be available analytically. If the
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partial derivatives are not available, a numerical method via finite differences
may be used.

We use an alternative approach based on a modified centroid quadrature that
does not use the partial derivatives. This modified centroid quadrature has been
proposed and investigated by Georg and Tauch [31]. The surface integrals to be
computed are approximated by

∫

S

f dS ≈
∑

i

f(vi,c) area[vi,1, vi,2, vi,3] . (7.22)

Here, vi,1, vi,2, vi,3 are the vertices spanning a triangle and point vi,c denotes the
centre of mass of the triangle [vi,1, vi,2, vi,3] given by

vi,c =
1
3

3∑

j=1

vi,j . (7.23)

Thus the integral over each triangle is approximated by multiplying the value of
the integrand at the centroid by the triangle area.

7.5 Scattering by complex particles

In this section we would like to present some exemplary scattering results for
complex particles using the NFM-DS. We will show computational results and
in some cases validation results obtained using other computational programs.
More information on the method of validation of the developed programs will
be given in the next section on validation.

7.5.1 Fibres

Field expansion using discrete sources helps very much when computing scatter-
ing by very elongated scatterers such as finite rotational symmetric fibres. With
such type of scatterers the discrete sources are positioned on the axis of symme-
try of the particle. As an example of an elongated particle we are considering a
long circular cylinder which is rounded at the bottom and the top. The shape
of this fibre is presented in Fig. 7.1.

In polar coordinates this fibre shape is described by the following equations:

r = a cos θ ±
√
b2 − a2sin2θ for 0 ≤ θ ≤ arctan

(
b

a

)

r =
b

sin θ
for arctan

(
b

a

)
< θ < arctan

(−a
b

)

r = −a cos θ ±
√
b2 − a2sin2θ for arctan

(−a
b

)
≤ θ ≤ π

So the total length of the fibre is 2(a+ b) and its diameter is 2b.
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Fig. 7.1. Geometry of a fibre.

Light scattering computations of fibre-like particles are of interest for various
scientific branches: astrophysics, atmospheric science, optical particle character-
ization – the latter especially in connection with airborne fibrous particles like
mineral, glass or asbestos fibres, which are considered to cause serious health
hazards. Here high aspect ratios are of special interest and so it is required that
a light scattering simulation algorithm can handle them. Figure 7.2 presents
the differential scattering cross-section (DSCS) of such a fibre and demonstrates
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Fig. 7.2. Differential scattering cross-section of a fibre particle with length 2(a + b) =
6 µm and diameter 2b = 0.12 µm. Incident wavelength is λ = 632.8 nm, refractive index
n = 1.5.
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the capabilities of using discrete sources in the T-matrix method for fibre-like
particles.

The total length of the fibre is 6 µm and the diameter is 0.12 µm which leads
to an aspect ratio of 50:1, which is an already challenging value. The incident
wavelength is 632.8nm and the refractive index is 1.5. The plane wave is incident
onto the long side of the fibre. Convergent computational results were achieved
using 50 discrete sources and 3,000 surface points to compute the line integrals.

Further computational results have been published by Pulbere and Wriedt
[32].

7.5.2 Flat plates

Application of discrete sources also helps in computing scattering by oblate
particles which are very flat. In this case the discrete sources have to be arranged
in the complex plane [33]. As an exemplary particle we use a flat circular disc
which is rounded at its edges. The geometry of such disc is shown in Fig. 7.3.

This particle shape can be described in polar coordinates by the following
equations:

r =
a

cos θ
for 0 ≤ θ ≤ arctan

(
b

a

)
,

r = a cos θ ±
√
b2 − a2sin2θ for arctan

(
b

a

)
< θ < arctan

(−a
b

)
,

r = − a

cos θ
for arctan

(−a
b

)
≤ θ ≤ π .

For this shape we also would like to present scattering results. As an example
we computed scattering by a flat circular disc having a total diameter of 6 µm
and a thickness of 0.06 µm. This results in an extremely high aspect ratio of
100 : 1. Figure 7.4 presents the corresponding scattering pattern. The incident
wavelength is 632.8nm and refractive index is 1.5. The plane wave is incident
onto the flat side of the disc. To achieve this convergent computational result
36 discrete sources were needed and the number of integration points needed is
5,000. Further scattering patterns of such flat particles have been published by
Hellmers et al. [34].

Fig. 7.3. Geometry of an oblate circular disc.
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Fig. 7.4. Differential scattering cross-section of an oblate circular disc with a radius
of 2(a+ b) = 6 µm and a thickness of 2a = 0.06 µm. Incident wavelength λ = 632.8 nm,
refractive index n = 1.5.

7.5.3 Cassini ovals

The particle shapes investigated so far have been convex in its shape. With
NFM-DS it is also possible to calculate scattering by concave shapes, which has
till now been considered hardly possible using a standard T-matrix algorithm.
To demonstrate this we make use of Cassini ovals. This kind of curves was
introduced by Giovanni Domenico Cassini (1625–1712), also known as Jean-
Dominique Cassini, in 1680. These curves are characterized in such a way that
the product of the distance of two fixed focal points is constant (while for a
normal ellipse the sum of the distance of two fixed focal points is constant).

The Cassini ovals have the Cartesian equation:
[
(x− a)2 + y2

] [
(x+ a)2 + y2

]
= b4 .

This leads to:

y = ±
(
−a2 − x2 ± (

4x2a2 + b4
) 1

2
) 1

2
. (7.24)

The corresponding expression in polar coordinates is

r =
(
a2 − 2a2 sin(θ)2 +

(−4a4 sin(θ)2 + 4a4 sin(θ)4 + b4
) 1

2
) 1

2
.

The Cassini shape therefore depends on the relation b/a (Fig. 7.5).
If a < b the curve is an oval loop, for a = b the result is a lemniscate (like the

∞-symbol) and for a > b the curve consists of two separate loops. If a is chosen
slightly smaller than b one gets a concave, bone-like shape. The concavity on
both sides will get deeper the closer a gets to b. By rotating this two-dimensional
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Fig. 7.5. Cassini ovals for a given a and varying values of b.

Fig. 7.6. 3D shape of a Cassini oval.

curve around the vertical axis we get a three-dimensional particle of the shape
of an oblate disc with a concavity on its top and bottom (Fig. 7.6. To get more
flexibility and to manipulate the thickness directly a factor c can be introduced
as the first term in equation (7.24).

Figure 7.7 shows the light scattering diagram for a Cassini oval based particle
with a = 1.1, b = 1.125 and c = 0.66, which gives a total diameter of 3.15 µm and
an aspect ratio of approximately 4:1. The incident wavelength is 632.8 nm and
refractive index is 1.5. The plane wave is incident onto the flat side of the Cassini
oval. For the computation 28 discrete sources positioned in complex plane were
used and 1,000 points were needed for integration. Further computational results
for concave particles have been published by Hellmers et al. [35] and Wriedt et
al. [36].

7.5.4 Anisotropic particles

Colour pigments are commonly anisotropic in their refractive index. To be able
to investigate scattering by such type of colour pigments the NFM-DS has been
extended to compute scattering by uniaxial anisotropic particles [37]. The next
scattering diagram (Fig. 7.8) presents scattering by an anisotropic sphere of di-
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Fig. 7.7. Differential scattering cross-section of a Cassini oval with a = 1.1, b = 1.125
and c = 0.66. Incident wavelength is λ = 632.8 nm, refractive index is n = 1.5.
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Fig. 7.8. Differential scattering cross section of an an unisotropic sphere (d = 400 nm,
nx = ny = 2.5 + j0.725, nz = 4.0 + j1.45, λ = 498 nm).

ameter 400nm and refractive indices of nx = ny = 2.5+ j0.725, nz = 4.0+ j1.45
alongside scattering results obtained from the DDSCAT program for validation.
The plane electromagnetic wave is incident along the z-axis and the incident
wavelength in this case is 498 nm. The figure demonstrates close agreement be-
tween the results of both programs. The related NFM-DS computer programs are
also capable computing scattering by rotational symmetric uniaxial anisotropic
particles as well as uniaxial anisotropic particles of arbitrary shape without ro-
tational symmetry.
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7.5.5 Arbitrarily shaped 3D particles

The NFM-DS sources can be used to compute light scattering by arbitrarily
shaped 3D particles which lack rotational symmetry. Scattering results have been
computed for cubes [21], ellipsoids [3], [38], superellipsoids [39], rough particles
[39], and hexagonal prisms [40]. In each case the shape of the scattering particle
has to be triangulated into a suitable surface patch model to compute the surface
integrals. There are various tools in computational graphics available to handle
this problem.

To perform a convergence check versus the number of integration points some
flexibility in surface triangulation is needed. Thus methods to increase or reduce
the number of surface patches are of great help. To increase the number of surface
triangles, the divide by three and the divide by four schemes implemented in the
a free DOS program Triangles by David Sharp [41] is suitable. To reduce the
number of triangles the SIM Rational Reducer program by Systems in Motion
AS [42] can be used.

As an example, scattering by a rounded hexagonal prism has been computed
and the results have been compared to results obtained from MMP and CST
Microwave Studio. The dimension of the rounded hexagonal prism are l = 2 µm
(rectangular face to rectangular face), d = 1.15471 µm (hexagonal face to hexag-
onal face), the refractive index used is n = 1.5 and the wavelength of the incident
plane wave is 628.319 nm. The plane wave is incident along the z-axis and the
scattering results are plotted in the y, z scattering plane. The three-dimensional
shape of the scattering hexagonal prism is plotted in Fig. 7.9. As can be seen
from the scattering plots in Figs 7.10 and 7.11, there is almost perfect corre-
spondence between the results of the different programs for p- as well as for
s-polarization.

Fig. 7.9. Rounded hexagonal prism l = 2 µm, d = 1.15471 µm.
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Fig. 7.10. Differential scattering cross-section of a rounded hexagonal prism l = 2 µm,
d = 1.15471 µm, n = 1.5, λ = 628.319 nm.
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Fig. 7.11. Differential scattering cross-section of a rounded hexagonal prism l = 2 µm,
d = 1.15471 µm, n = 1.5, λ = 628.319 nm.

7.5.6 Agglomerates

Characterization of the size and the structure of agglomerates is also needed for
many applications such as determination of soot in vehicle diesel exhaust or of
aircraft exhaust soot in the atmosphere. For this angular distributions of light
scattered by the particles are commonly measured and used for particle charac-
terization. To compute scattering by such type of aggregates particle geometry
data have to by generated using a cluster–cluster aggregation algorithm [43].
Figure 7.12 includes the geometry of an exemplary aggregate. The diameter of
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Fig. 7.12. Figure of cluster cluster aggregate with parameters diameter of primary
particle d = 30 nm, fractal dimension Df = 1.3, radius of gyration rg = 4.5462 µm, 130
primary spheres.
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Fig. 7.13. Single scattering and orientation averaged DSCS of the cluster of Fig. 7.12
incident wavelength λ = 514 nm, soot refractive index n = 1.57 + j0.56.

primary particles is d = 30 nm, the fractal dimension is Df = 1.3, and the ra-
dius of gyration is rg = 4.5462 µm. There are in total 130 primary spheres in the
aggregate. Figure 7.13 shows the differential scattering cross-section of this soot
aggregate alongside orientation-averaged scattering. Orientation averaging leads
to a damping of oscillations which are present in the single scattering diagram
which resembles Rayleigh scattering.

7.5.7 Inclusions

Commonly with particles having inclusions, the T-matrix method is restricted to
spherical inclusions. Using a multiple scattering approach we extended the NFM-
DS to handle scattering by off-center nonspherical inclusions. A full description
of the theory and additional computational results are available in Doicu and
Wriedt [44] and Schuh and Wriedt [45].
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Fig. 7.14. Geometry of sphere with spheroidal inclusion, sphere size parameter kr =
10, spheroid size parameters ka = 5, kb = 2.5 placed at kxi = 2, kyi = 4, kzi = 2;
orientation Euler angles α = 0◦, β = 90◦.

We consider a spherical particle with a spheroidal inclusion. The geometry of
the scattering problem is shown in Fig. 7.14. The size parameter of the sphere is
kr = 10, the refractive index is n = 1.334. The size parameters of the spheroid are
ka = 5, kb = 2.5 placed at kxi = 2, kyi = 4, kzi = 2; orientation Euler angles of
the inclusion are α = 0◦, β = 90◦. The refractive index of the inclusion is n = 1.6.
In Figs 7.15 and 7.16, we plot the differential scattering cross-section computed
with DFM-NS and the multiple multipole method for validation. There is close
agreement between the two computational results.
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Fig. 7.15. DSCS of a sphere with a prolate spheroid inclusion with the scattering
geometry of Fig. 7.14.
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Fig. 7.16. DSCS of a sphere with a prolate spheroid inclusion with the scattering
geometry of Fig. 7.14.

7.5.8 Particles on surfaces

Optical characterization of defects such as particles, bumps or pits on a silicon
wafer surface is of great importance in semiconductor manufacturing. As semi-
conductor device dimensions become smaller, there is a need for optical wafer
surface scanning systems to detect the size and composition of microcontamina-
tions to sizes as low as 0.1 µm or even smaller. To expand the current detection
ability an efficient mathematical model and computer simulation technique is
needed. There are some appoximate approaches to computing scattering by a
dielectric particle on a plane dielectric surface ([28] pp. 192).

But as these approaches are no longer sufficient for a modern design of par-
ticle surface scanners the NFM-DS has been extended to handle the particle
surface scattering problem in an exact way. The theory is fully described in a
book contribution by Doicu and Wriedt [46].

As an exemplary computational result, we present the scattering plot in
Fig. 7.17 for a 1.09 µm diameter polystyrene sphere on a plane silicon surface with
the following parameters: sphere diameter d = 1.09 µm, polystyrene refractive
index n = 1.64, silicon refractive index n = 4.90 + i3.84, incident wavelength
λ = 308 nm. The plane wave is incident normal to the plane surface.

Plasmon resonance phenomena, that is the local amplification of light by
nanoscale silver or gold noble particles, have potential applications for biosen-
sors, bio-labels and nano-optical devices. Plasmon resonances of small noble
metal spheres can be detected as peaks in the measured light scattering spec-
tra. Transmission dark-field microscopy is a technique where only the particles
scatter light into the direction of the microscope objective. Such a measuring
device can visualize very small particles as coloured discs. The surface plas-
mon resonance frequency from a nonspherical particle or a particle aggregate
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Fig. 7.17. DSCR of a sphere (diameter d = 1.09 µm, n = 1.64), on a plane silicon
surface with n = 4.90 + j3.84 and an incident wavelength λ = 308 nm.

is different compared to a single spherical particle. With this effect, measuring
techniques which use white light illumination are capable of differentiating be-
tween aggregated particles and a single particle because of their different color.
Even when bioreceptor molecules attached to a gold or silver sphere detect its
biomolecular counterpart, the resonance frequency is shifted. In the following
we give some simulation examples of particles on or near a plane surface. We
compute intensities at different scattering angles over the visible spectrum of
wavelengths of small particles with diameter d = 80 nm. The intensities will be
detector-integrated over a range of φNA = 25◦ which corresponds to a numeri-
cal aperture of NA = n sin(NA) of the objective lens. The particles consist of
silver. The wavelength-dependent refractive indices are interpolated values from
Johnson et al. [47]. The numerical aperture depends on the medium surrounding
of the particle. The incident beam angle with respect to the normal is φ0 = 30◦

and the surrounding medium is water (n = 1.333).
From the computational results of the detector-integrated DSCS printed in

Fig. 7.18 we see that the frequency and the form of the resonance peak very
much depends on the distance of the silver particle from the plane silver surface.
With a higher distance it shifts to a shorter wavelength and it also becomes
broader.

7.6 Validation

An important step in development of the NFM-DS theory and the related com-
puter programs is validation by comparing to results obtained from other pro-
grams. Although in scattering research measurement results were applied for
validation of theory and corresponding programs [48] we did not consider this



7 Nullfield method with discrete sources 289

450 500 550 600 650 700

wavelength, nm

1E+00

1E+01

1E+02

1E+03
detector integrated DSCS

2 nm

20 nm

Fig. 7.18. Detector integrated DSCS of a silver sphere (d = 80 nm) on a silver plane
surface with different heights of the particle.

as a suitable approach in our program development. In light scattering optics, it
is much more difficult to obtain accurate measurements suitable for validation.
Therefore we prefer to use other computation results for validation. Alongside
validation it is, of course, important to care for convergence with respect to the
number and order of discrete sources used in the simulation and with respect
to the number of integration points used in computing the relevant surface in-
tegrals. The number of integration points proved to be much more stable than
the number and order of discrete sources. In some cases we even found some
plateau in the number and order of discrete sources where we obtained conver-
gent scattering results. Increasing the number or order of discrete sources beyond
this plateau again led to nonconvergence, which can make a convergence check
somewhat tricky.

For program validation three different approaches have been used. In the first
method, two different implementations of NFM-DS have been used for validation.
For example, the program for the composite scatterers was compared to results
of the multiple scattering program. In this case the composite particle consisted
of three parts with the center part free space such that the problem could also
be treated as a two-particle multiple scattering problem [40].

In the second approach we developed the Discrete Sources Method (DSM)
together with the research group of Yuri Eremin, Lomonosov Moscow State
University, for the same scattering problems. One may almost speak about co-
evolution in program development. Examples are the flat disc [35], Cassini ovals
[34], the long fibre [49] and total internal reflection microscopy (TIRM) [50].

In the third method we used other freely available programs for validation.
In this we focused on three methods. These are Multiple Multipole Program
(MMP) by Bomholt and Hafner [51], Discrete Dipole Approximation (DDA)
[52] implemented in the FORTRAN program DDSCAT [53], and in various im-
plementations of Finite Different Time Domain (FDTD) and the Volume Integral



290 Thomas Wriedt

Equation Method (VIEM) [54] and the related Finite Integration Technique FIT
[55]. FIT is implemented in the commercial CST Microwave Studio program
[56]. We also had a look at other commercial computational electromagnetics
programs but found the CST Microwave Studio program to be the most suit-
able. With the other programs tested we hardly could input particle shape data
or the program was restricted to small particle sizes compared to the incident
wavelength. The reason for this is that with most programs not only the surface
of a scatterer but the full volume of the scattering particle has to be discretized,
which leads to a high demand in computer resources.

7.7 Applications

In this section we briefly mention the broad range of applications the computa-
tional programs based on NFM-DS have found in solving practical technological
applications in recent years.

Phase Doppler Anemometry (PDA) was extended to size spheroidal particles
[57,58]. The NFM-DS was used to develop an optical instrument for mineral and
asbestos fibre characterization [32].

Extensive light scattering computations for aggregated particles helped to
characterize soot particles in the flame of a Bunsen burner [43].

There is an ongoing project for characterization of red blood cells using light
scattering [35]. Within a collaborative project total internal reflection microscopy
(TIRM) for measurement of nanoforces acting on a colloidal particle near a plane
surface has been developed [50]. Sensors for surface particle or surface defect
characterization have been developed based on the NFM-DS.

7.8 Conclusion

In this chapter an overview of the progress in developing the NFM-DS has been
given. Some open problems are still left. These include bi-anisotropic particles,
bi-anisotropic host media, chiral media, nonaxisymmetric compound particles
and optimal deposition of discrete sources and faces for surface integration.

Most of the FORTRAN programs developed within this project have been
published on CD with a monograph on the Null-Field Method with Discrete
Sources [40]. For further applications not covered by this review, such as chiral
particles, layered particles [59], composite particles [60], Gaussian laser beam
scattering [61], evanescent wave scattering [62] and dipole scattering the inter-
ested reader is referred to this book or to the cited papers.
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7.9 Symbols and abbreviations

(a0
ν , b

0
ν) expansion coefficients of the incident field

(a0
ν , b

0
ν) expansion coefficients of the incident field

Dmn normalization constant
E0,Es incident and scattered fields
(e,h) surface current densities
(f0

ν , g
0
ν) expansion coefficients of the scattered field

k wavenumber{
M1,3

mn,N
1,3
mn

}
localized vector spherical functions{M1,3

mn,N 1,3
mn

}
distributed vector spherical functions{M1,3

ni ,N 1,3
ni

}
magnetic and electric dipoles{M1,3

n ,N 1,3
n

}
vector Mie-potentials

n refractive index
S particle surface
[T] transition matrix
(x, y, z) Cartesian coordinate
x position vector
α±

n (x) Green function
α, β, γ Euler angles
(ϑ, ϕ) angular coordinates
ε permittivity
λ0 wavelength in vacuum
σd/πa

2 normalized differential scattering cross-section (DSCS)
µ permeability
vi vertex points on particle surface
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