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8.1 Introduction

Radiative transfer through turbid media is usually modeled on the basis of the
stationary radiative transfer equation (RTE). As a rule, in addition various ap-
proximations of the radiative transfer equation, such as the spherical harmon-
ics equations or small angle approximations, are used. The spherical harmonics
equations are relevant for transport problems in optically thick and weakly het-
erogeneous media, whereas small angle approximation works well for radiation
transfer problems in media characterized by the phase functions peaked in the
forward scattering direction.

Modern methods of atmospheric research require multiply scattered radiation
field intensity calculations at large discrete spatial-angular arrays for detailed
modeling of light scattering media. Besides, radiation field calculations in the
wide range of wavelengths are necessary to estimate solar radiation influence on
weather and climate variations. In some cases, however, the information on the
scattered radiation field for few wavelengths is sufficient.

So we shall consider the radiative transfer equation for the fixed wavelength
value, rather than one for a spectral line. RTE for the radiance ψ(�r, �Ω) can be
written in the form

L̂ψ = B(�r, �Ω) , B(�r, �Ω) = Ŝψ(�r, �Ω) + F (�r, �Ω) , (8.1)

where
�Lψ = �Ω · �∇ψ(�r, �Ω) +Kext(�r)ψ(�r, �Ω) (8.2)

is a differential transport operator,

Ŝψ = Kext(�r) ω̄0(�r)
∫ +1

−1
dγ
∫ 2π

0
dϕp(�r, �Ω�Ω′)ψ(�r, �Ω′) (8.3)

is an integral operator of scattering, �Ω is the direction of propagation, defined
by azimuth angle ϕ and value γ = cos θ, where θ is polar angle (see Fig. 8.1).
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Fig. 8.1. Vector �Ω.

The extinction coefficient Kext(�r), the single scattering albedo ω̄0(�r) and
the scattering phase function p(�r, χ) are suggested to be positive. The following
normalization condition for the scattering phase function p(�r, χ) is used:

∫ +1

−1

∫ 2π

0
dγ dϕp(�r, �Ω · �Ω′) = 1 , (8.4)

where χ = �Ω · �Ω′ is the inner product of vectors �Ω(γ, ϕ) and �Ω′(γ′, ϕ′),

�Ω · �Ω′ = γ γ′ +
√

1 − γ2
√

1 − (γ′)2 cos(ϕ− ϕ′) . (8.5)

The function F (�r, �Ω) defines solar and heat radiation sources. For formulation
of a transport problem in the atmospheric region G with the boundary Γ, some
boundary conditions on Γ should be also defined:

ψ(�r, �Ω) = ψ(�r, �Ω) = A(�r) R̂ ψ(�r, �Ω) + ψ0(�r, �Ω) , at �r ∈ Γ, �Ω · �n(�r) < 0 . (8.6)

Here �n(�r) is the external normal at the point �r of the boundary surface Γ and the
function ψ(�r, �Ω) defines the radiation intensity entering the region G, ψ0(�r, �Ω)
is radiation intensity of the source on the boundary surface, A(�r) ∈ [0, 1] is
the reflection albedo. The operator R̂, defining the radiation reflection for the
surface Γ, can be written as

R̂ ψ(�r, �Ω) =
∫
�Ω′·�n>0

Re (�r, �Ω, �Ω′)ψ(�r, �Ω′) d�Ω′ ,

Re (�r, �Ω, �Ω′) is the bi-directional surface reflectance, normalized by equality

R̂ [1] =
∫
�Ω′·�n>0

Re (�r, �Ω, �Ω′) d�Ω′ = 1 .

In particular, the operator

R̂ ψ(�r, �Ω) =
1∫

(�Ω′· �n)>0 (�Ω′ · �n) d�Ω′

∫
(�Ω′· �n)> 0

(�Ω′ · �n)ψ(�r, �Ω′) d�Ω′

corresponds to the well known Lambert reflection law, the operator R̂ ψ(�r, �Ω) =
ψ(�r, �Ω∗) defines mirror reflection processes (here the function �Ω∗(�r, �Ω) defines
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Fig. 8.2. Calculation regions with Cartesian coordinate systems.
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Fig. 8.3. Calculation region with the spherical coordinates system.

vector �Ω∗, symmetrical to vector �Ω relatively the plane perpendicular to surface
Γ at the point �r), whereas the operator R̂ ψ(�r, �Ω) = ψ(�r,−�Ω) corresponds to the
returned scattering law, relevant for irregular surfaces.

A parallelepiped is used as a calculation region G in many cases, and so three
coordinates {x, y, z} define the vector �r introduced above. Obviously, it is the
case of (x, y, z)-geometry, depicted in Fig. 8.2.

More rarely the spherical coordinates �r = {r, ϑ, ϕ} are used (see Fig. 8.3).
There exist situations, when the solution ψ(�r, �Ω) is independent on one of the
variables. Then the corresponding variable is vanished (see Fig. 8.2).

Numerical algorithms for transport equation solving are frequently based
either on the stochastic Monte–Carlo (MC) method (Marchuk et al., 1980) or the
deterministic Discrete Ordinates Method (DOM) (Chandrasekhar, 1950; Bass et
al., 1986). These two methods usually complement each other, each possessing
some advantages and shortcomings.

The MC method can easily allow us to take into account the complicated
spatial structure of calculation regions. However, it provides solutions of the
numerical transport problems only for a small number of radiation detectors.
But, as is clear, the smaller detector array size in phase space {�r, �Ω} the less
the accuracy of calculation of the functional, corresponding to the detector.
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Obviously, the smaller the detector size the fewer photons it receives. So,
in optically thick media (thick clouds or twilight atmosphere), a large number
of histories is necessary. A more complicated way of region nonhomogeneity
accounting is used in the DOM method compared to the MC method. However,
DOM provides the solution in the whole spatially-angular grid located inside the
calculation region, independently of the region size. Test calculations confirm
high DOM accuracy even in the case when the solution undergoes variations
over 18–20 orders. On the other hand, due to the necessity of radiation field
calculation in the whole region, DOM is sometimes proved more computationally
expensive as compared to the MC method.

The slab model approximation is relevant for radiation transfer problems in
horizontally homogeneous regions (such as a cloud or clear sky). If slab optical
thickness is more than 5–8 optical lengths, asymptotic methods may be used for
reflected and transferred light intensity calculations. For complicated radiation
transport problems, various decomposition techniques have been developed, con-
sisting of combinations of analytical, asymptotic and simple numerical methods.
The development of multiprocessor computers enables us to increase DOM codes
efficiency. Parallel calculation algorithms enable us to decrease DOM calculation
time and so to come close to MC, despite the MC itself parallelizing. Besides,
the nonhomogeneity approximation accuracy via DOM is currently almost as
high as that via the MC method.

Below we shall consider discrete ordinates methods for the transport equa-
tion, namely: the specification of transport equation parameters (section 8.2);
the construction of angular (section 8.3) and spatial (section 8.6) grids; the
scattering integral Ŝ (section 8.4) and the differential operator L̂ (section 8.6)
approximations; and the separation of diffused and direct light (section 8.5).
In correspondence with the introduced classification (section 8.6) various grids
schemes will be considered (sections 8.7–8.10), methods of grid equations will be
presented (section 8.11) and parallel calculation organization will be introduced
(section 8.12). Code implementations of various DOM versions for atmosphere
optics problems will be given in sections 8.13 and 8.14.

8.2 Description of the calculation region

We present results of radiation field calculations in a cloudy atmosphere on
the set of pixels. Each pixel size (on the (x, y) plane) corresponds to the re-
quired calculation accuracy, vertical atmosphere characteristics (over z-axis) be-
ing considered as known. An example of the representation of atmosphere by
3.6 × 105 pixels is given by Cahalan et al. (2005).

In each pixel, the transfer equation coefficient behavior over the height (z-
axis) is suggested to be known (via the direct problem solution). The spatial grid
mesh in the calculation region cannot be larger than the corresponding pixel size.

Proper approximations for cross-sections of aerosol and molecular light scat-
tering processes and light absorption by various gases are used in transport prob-
lems. Corresponding coefficients in the transport equation are then obtained as
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weighted mean values over aerosol, molecular, gaseous and cloudy contributions.
For example, for a cloud consisting of water (w) and ice (i), transport equation
coefficients are defined by formulas

Kext = Kext,w +Kext,i , ω0 =
ω0,wKext,w + ω0,iKext,i

Kext,w +Kext,i
,

p =
ω0,wKext,wpw + ω0,iKext,ipi
ω0,wKext,w + ω0,iKext,i

.

These coefficients are usually approximated by constants either inside the pixel
or inside the spatial grid mesh.

8.3 Discrete ordinates method and a angular quadratures

The discrete ordinates method is based on the transfer from the continuous
angular dependence of the transport equation solution to the discrete one, that
is on the introduction of the angular quadrature over variables θ and ϕ on the
unit sphere {−1 < γ < 1, 0 < ϕ < 2π}.

Let us consider such a quadrature for the hemisphere {−1 < γ < 1, 0 < ϕ <
π}. At first, the interval −1 < γ < 1 is divided into subintervals

−1 = γ−L−1/2 < · · · < γ−�−1/2 < . . . γ−1/2

= 0 = γ1/2 < · · · < γ�+1/2 < . . . γL+1/2 = 1

with nodes γ�, 
 = 1, . . . , L, being chosen inside each subinterval:

γ� ∈ [γ�−1/2, γ�+1/2] , γ−� ∈ [γ−�−1/2, γ−�+1/2] , ∆γ� =
∣∣γ�+1/2 − γ�−1/2

∣∣ .
A similar subdivision of interval 0 < ϕ < π is introduced for each node γ�:

0 = ϕ�,1/2 < · · · < ϕ�,m+1/2 < · · · < ϕ�,M�+1/2 = π ,

∆ϕ�,m = ϕ� ,m+1/2 − ϕ�,m−1/2 , ϕ�,m ∈ (ϕ� ,m− 1/2, ϕ�,m+1/2) .

Thus, the hemisphere is decomposed into the set of fragments, each point
{γ�, ϕ�,m} being chosen as a quadrature node, with the value of a hemisphere
element w�,m = ∆γ� ∆ϕ�,m being equal to corresponding quadrature weight.
Similarly, the quadrature can be introduced for another hemisphere.

The quadrature is called a rectangular one if the number M� of subintervals
over ϕ is the same for each γ-layer. Concentration of nodes near the unit sphere
poles represents the main shortcoming of the rectangular quadrature. There is
not this shortcoming in triangular quadratures: the closer node γ� is to the sphere
pole the less the corresponding parameter M�.

Two important requirements should be satisfied for the quadrature construc-
tion. The first requirement is that quadrature nodes should be distributed in
a maximally uniform manner over the unit sphere. The second one is that the
quadrature should provide an exact calculation of the following integrals:
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2L∑
�=1

γk1� ∆γ� =
∫ 1

−1
dγ γk1 , (8.7a)

2L∑
�=1

∆γ�
M�∑
m=1

ξk2�,m∆ϕ�,m =
∫ 1

−1
dγ
∫ π

0
dϕξk2(γ, ϕ) , (8.7b)

2L∑
�=1

∆γ�
M�∑
m=1

ηk3�,m∆ϕ�,m =
∫ 1

−1
dγ
∫ π

0
dϕηk3(γ, ϕ) , (8.7c)

where the set of values k1, k2, k3 depends on quadrature type. Here the values
ξ, η, γ are projections of transport vector �Ω on coordinate axes x, y and z,
correspondingly, see Fig. 8.1:

ξ�,m = ξ(γ�, ϕ�,m), η�,m = η(γ�, ϕ�,m), ξ = sin θ cosϕ, η = sin θ sinϕ, γ = cos θ .

The scattering integral in the transfer equation can be calculated with a high
accuracy, if Eqs (8.7a)–(8.7c) are satisfied.

Two examples of the triangular angular quadrature with M� = 2(L− |
|+1)
are depicted in Fig. 8.4. Here the darker shading is prescribed for the larger
sphere fragment.

Although the distribution of LQ-quadrature nodes over the sphere is not uni-
form (see Fig. 8.4), the quadrature is symmetrical with respect to rotation by 90◦.
Besides, it satisfies the conditions (8.7) at k = 0, 1, . . . , 2L. Unfortunately, these
useful quadratures exist only for L ≤ 10, because equations, defining weights
and nodes of the LQ-quadarature, are not resolved at L > 10.
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Fig. 8.4. Examples of angular quadratures for hemisphere {−1 < γ < 1, 0 < ϕ < π}.
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Fig. 8.5. Six nodes of one set for DCT quadrature.

E-quadrature (Carlson, 1976) exists for arbitrary L. All squares w�,m of the
quadrature are equal to value π/(L (L+ 1)), see Fig. 8.4. Such severe constraint
does not provide great freedom for quadrature node choice, because Eqs (8.7a)–
8.7c) are exactly satisfied only for k = 0, 1, 2 in the case of E-quadrature.

DCT (double circle triangle) quadratures (Koch et al., 1995) are generaliza-
tion of Carlson’s ones. DCT grids consist of sets, each of which contains six
nodes arranged on one quadrant; see an example in Fig. 8.5. Weights of all six
nodes must be identical. This ensures the quadrature symmetry. But weights of
different sets may be chosen differently that provide free parameters to increase
the quadrature accuracy in the sense of Eq. (8.7).

Equation (8.7a) for k = 0, 1, . . . , 4L − 1 is satisfied in the case of Gauss’s
grid over γ. If one uses a uniform ϕ-grid with centered nodes for each γ-layer
(i.e. at ϕ�,m = (ϕ�,m+1/2 + ϕ�,m−1/2)

/
2), then conditions (8.7b) and (8.7c) are

approximately satisfied (the accuracy being sufficiently high for a large number
of quadrature nodes). The conditions (8.7b) and (8.7c) are exactly fulfilled for the
Gaussian ϕ-grid. However, in this case the node distribution is inhomogeneous.
It should be noted that another interpolation formulas can be used instead of
those based on Gaussian grid. For example, one can use either Radau quadrature
(where γ−L = −1, and the condition (8.7a) is fulfilled for k = 0, 1, . . . , 4L − 2)
or Lobatto quadrature (where γ−L = −1, γL = 1, and the condition (8.7a) is
satisfied for k = 0, 1, . . . , 4L− 3).

The quadratures with weights and nodes that permit exact integration of
polynomials up to the highest possible order and are invariant to the desired
rotation group have features of both Gauss’s and Carlson’s grids (Lebedev, 1976).
The weights and nodes of these quadratures are defined by non-linear algebraic
systems.

The significant shortcoming of all mentioned quadratures is that the grid
condensing cannot be realized uniformly as L increases. That is to say, each
fragment of a coarser grid is not formed by proper combination of fragments of
a finer grid. A Special T-quadrature (Aussourd, 2003) is constructed, where this
problem is solved: each portion of a coarser grid is divided into four identical
portions of a finer grid (an example is shown in Fig. 8.6).
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Fig. 8.6. T-quadrature for {0 < γ < 1, 0 < ϕ < π}.

The mentioned feature of the T-quadrature provides the capability to con-
dense (refine) the angular grid in that solid angle, where the transport equation
solution significantly depends on angular variables. Additional nodes are then
simply added to the initial quadrature grid, whereas using other quadratures
one has to correct the neighboring nodes in the process of grid condensing to
keep Eqs (8.7) fulfillment for a finer grid (Longoni and Haghighat, 2001).

For problems with the forward peaked phase functions, common for atmo-
spheric optics problems, special kinds of quadratures were constructed, for which
quadrature nodes are concentrated near sphere poles (Sanchez and McCormic,
2004).

8.4 Scattering integral representation

After the introduction of angular quadratures in DOM, the solution ψ(�r, γ, ϕ) is
replaced by a collection of functions ψ(�r, γ�, ϕ�,m). Two types of the scattering
integral Ŝψ representations exist. The first type is widely used in neutron physics
and atmospheric optics problems. Here the phase function p(�r, �Ω·�Ω′) is presented
via expansion into a finite sum on the Legendre polynomials,

p(�r, �Ω · �Ω′) =
1
4π

N(�r)∑
ν=1

(2ν + 1)ων(�r)Pν(�Ω · �Ω′) , (8.8)

that are orthogonal in the interval (−1, 1):

∫ 1

−1
Pn(χ)Pν(χ) dχ = 2 δn,ν/(2n+ 1) ,

where δn,ν is the Kronecker delta symbol. The expansion coefficients are defined
by formulas

ων(�r) = 2π
∫ 1

−1
p(�r, χ)Pν(χ) dχ , ω0(�r) ≡ 1 . (8.9)
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The expression (8.5) and Legendre polynomials adding theorem (Ryzik and
Gradstein, 1972)

Pν(�Ω �Ω′) = P 0
ν (γ)P 0

ν (γ′) + 2
ν∑
µ=1

(ν − µ)!
(ν + µ)!

Pµν (γ)Pµν (γ′) cosµ (ϕ− ϕ′) ,

where
Pµν (γ) = (−1)µ (1 − γ2)µ/2

dµ

dγµ
Pν(γ)

are the associated Legendre functions, allow us to represent the scattering inte-
gral Ŝψ by the following sum

Ŝψ =
1
4π
Kext(�r) ω̄0(�r)

N(�r)∑
ν=0

(2ν + 1)ων(�r)
{
P 0
ν (γ)M c

ν,0(�r)

+ 2
ν∑
µ=1

(ν − µ)!
(ν + µ)!

Pµν (γ) · [cosµϕM c
ν,µ(�r) + sinµϕMs

ν,µ(�r)
]}

, (8.10)

where angular moments M c
ν,µ(�r) and Ms

ν,µ(�r) of the solution are determined as

M c
ν,µ(�r) =

∫ 1

−1
dγ
∫ 2π

0
Pµν (γ) cosµϕψ(�r, γ, ϕ) dϕ ,

Ms
ν,µ(�r) =

∫ 1

−1
dγ
∫ 2π

0
Pµν (γ) sinµϕψ(�r, γ, ϕ) dϕ .

After replacing all integrals by corresponding quadrature sums

M c
ν,µ(�r) �

∑
�

∑
m

Pµν (γ�) cosµϕ�,m ψ(�r, γ�, ϕ�,m) ,

Ms
ν,µ(�r) �

∑
�

∑
m

Pµν (γ�) sinµϕ�,m ψ(�r, γ�, ϕ�,m) , (8.11)

we obtain the discrete representation of the scattering integral.
Utilizing representation (8.10), one can store a set of angular moments (8.11)

and values Pµν (γ�) cosµϕ�,m and Pµν (γ�) sinµϕ�,m in computer memory, rather
than solution values at grid nodes.

The second type of the integral Ŝψ representation consists in the direct re-
placement of Ŝψ by quadrature sums:

Ŝψ(�r, γ�, ϕ�,m) � Kextω̄0(�r)
∑
�′

∑
m′

H�,�′,m,m′(�r)ψ(�r, γ�′ , ϕ�′,m′)w�′,m′ ,

H�,�′,m,m′(�r) ≈ p

(
�r, γ� γ�′ +

√
1 − γ2

�

√
1 − (γ�′)2 cos(ϕ�,m − ϕ�′,m′)

)
,
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and normalization conditions (see (8.4)) must be kept
∑
�′

∑
m′

H�,�′,m,m′(�r)w�′,m′ = 1 .

Now the values ψ(�r, γ�, ϕ�,m) themselves and the elements of the scattering ma-
trix H should be stored in computer memory during calculations. It is notewor-
thy that the number Ñ(�r) of angular moments (8.11), which form the solution
accordingly to formula (8.10), is equal to [N(�r)]2, where N(�r) is the number of
moments used for the phase function representation (see Eq. (8.8)). If the solu-
tion is an even function of the azimuth angle ϕ, the moments Ms

ν,µ(�r) vanish,
and so only Ñ(�r) = N(�r) [N(�r) + 1]/2 moments are used in calculations.

Thus, while using the first method, one should store Ñ(�r) (1 + 2M) values
(angular moments and auxiliary values Pµν (γ�) cosµϕ�,m, Pµν (γ�) sinµϕ�,m) for
each spatial mesh �r, whereas in the case of using the second method, exactly
M + M2 values (solution results and scattering matrix elements) should be
stored (here M is full number of quadrature nodes). So, as one can see, the
first method requires less computer memory than the second one, if Ñ(�r) <
M (M + 1)/(2M + 1). The last inequality is valid in the case of reactor-shielding
problems, where N(�r) ≤ 5, M ≤ 80. The phase functions are of more complex
type in problems of radiation transfer through the terrestrial atmosphere, and
therefore one should use the sums of a great number of Legendre polynomials
to represent them. Hence the second method can be more economic because
it uses a smaller number of quadrature nodes. Note also, that matrix elements
H�,�′,m,m′(�r) may be calculated during the main computation procedure, rather
than stored in computer memory. It will result in a decrease in the necessary
memory volume, but an increase in the calculation time.

It is just the first method that is applied in the majority of codes using
the scattering integral calculation. The associated Legendre functions Pµν (γ) are
usually calculated via the recurrent formulas (Ryzik and Gradstein, 1972):

Pµν+1(γ) =
2ν + 1

ν − µ+ 1
γ Pµν (γ) − ν + µ

ν − µ+ 1
Pµν−1(γ) , (8.12)

where

P νν (γ) =
(
1 − γ2)ν/2 (−1)ν

(2ν)!
2νν!

,

P ν−1
ν (γ) = γ

(
1 − γ2)(ν−1)/2

(−1)ν−1 (2ν − 1)!
2ν−1 (ν − 1)!

.

In atmospheric optics transport problems, one has often to deal with highly
forward-peaked phase functions, defined via values at the nodes of a some grid
over the scattering angle χ. The calculation of coefficients ων(�r) in the expansion
(8.8) represents a complicated problem for such phase functions at ν > 60,
because of two facts:

(a) the Legendre polynomials of high order, contained in the integrals (8.9), are
quickly oscillating functions, especially in the vicinity of points χ = ±1,
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(b) the Legendre polynomial values are incorrectly calculated near χ = ±1 (see
Eq. (8.12)). A widely used code, presented at the site http://
rts.kiam.ru/verval/sfxp.htm, is based on a special approach for effective
ων(�r) calculations with a high accuracy.

An adequate representation of highly forward-peaked phase functions re-
quires calculations with a large number of polynomials (up to some hundreds
and even thousands). For this reason, it is helpful to decompose a highly-peaked
phase function into the sum of a singular component (corresponding to the phase
function peak) and a regular component. The expansion (8.8) can be applied to
the regular component only, the singular component being approximated by the
delta-function (Wiscombe, 1977; Landesman and Morel, 1989).

8.5 The general solution

As was mentioned in the introduction, function F (�r, �Ω) in Eq. (8.1) describes
radiation sources, usually representing either solar or thermal radiation. In the
first case function F (�r, �Ω) is singular with respect to angular variables:

F (�r, �Ω) = F0 δ(�Ω − �Ω0) δ(f0(�r)) ,

where δ is the Dirac delta-function, the vector �Ω0 defines the solar radiation
direction, F0 is the solar radiation flux and the function f0(�r) determines the
surface through which radiation penetrates into the region under consideration.

The solution can be presented as the sum of two functions

ψ(�r, �Ω) = ψn(�r, �Ω) + ψs(�r, �Ω) ,

function-terms being the solutions to the following problems

L̂ψn(�r, �Ω) = F (�r, �Ω) , ψn(�r, �Ω) = 0 , as �r ∈ Γ, �Ω · �n(�r) < 0 (8.13)

and
L̂ψs(�r, �Ω) = Ŝψs(�r, �Ω) + Ŝψn(�r, �Ω) ,

ψs(�r, �Ω) = A(�r) R̂ ψs(�r, �Ω) +A(�r) R̂ ψn(�r, �Ω) +ϕ0(�r, �Ω) as �r ∈ Γ, �Ω · �n(�r) < 0 .

Here the function ψn(�r, �Ω) corresponds to the unscattered component of radi-
ation, whereas the function ψs(�r, �Ω) represents the scattered component. The
problem (8.13) for the unscattered component can be easily solved analytically,
whereas the scattered component ψs(�r, �Ω) has to be obtained numerically with
the help a grid scheme.
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8.6 Approximation of differential operator L̂

When grid approximations of operator L̂ are performed, the function B(�r, �Ω) in
Eq. (8.1) and the boundary source ψ(�r, �Ω) are assumed to be known (further
indices 
, m in all formulas are omitted). At the first step, the spatial grid itself
is specified. For example, in the case of (x, y, z) geometry we have

x1/2 < . . . < xi+1/2 < . . . < xI−1/2 < xI+1/2 ,

y1/2 < . . . < yj+1/2 < . . . < yJ−1/2 < yJ+1/2 ,

z1/2 < . . . < zk+1/2 < . . . < zK−1/2 < zK+1/2 . (8.14)

Here xi±1/2, yj±1/2, zk±1/2 are grid mesh bounds,

∆xi = xi+1/2 − xi−1/2 , ∆yi = yj+1/2 − yj−1/2 , ∆zk = zk+1/2 − zk−1/2

are mesh sizes,

xi = (xi+1/2 + xi−1/2)/2 , yj = (yj+1/2 + yj−1/2)/2 , zk = (zk+1/2 + zk−1/2)/2

are mesh centers, and integer I, J , K are numbers of meshes.
Each grid mesh is a parallelepiped. Algorithms, based on the grids with

meshes of tetrahedral or even arbitrary polyhedral forms, have been developed,
aimed at accuracy increasing in the representation of discontinuity surfaces for
the coefficient of the transport equation (Morel and Larsen, 1990; Castriani and
Adams, 1995; Grove and Pevey, 1995). Further, we do not consider the problems
related to a design of such complicated grids and corresponding calculations. We
consider only regular grids of a type given by Eq. (8.14).

Spatial moments of the solution rather than solution values themselves ap-
pear as calculation values at grid nodes. (Remember that spatial moments are
integrals of the solution over a mesh and its bounds, integration being fulfilled
with different weight functions.) For example, for grid (8.14) the zero spatial
moments, arising in the case when the weight function is equal to 1, are defined
by the formulas

ψi,j,k =
1

∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzψ(x, y, z) ,

ψi±1/2,j,k =
1

∆yj ∆zk

∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzψ(xi±1/2, y, z) ,

ψi,j±1/2,k =
1

∆xi ∆zk

∫ xi+1/2

xi−1/2

dx
∫ zk+1/2

zk−1/2

dz ψ(x, yj±1/2, z) ,

ψi,j,k±1/2 =
1

∆xi ∆yj

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy ψ(x, y, zk±1/2) . (8.15)

These values may be interpreted as average values of the solution over a mesh,
including its bounds. The averages of the solution are expected to be more stable
characteristics of the solution, than solution values themselves at grid nodes.
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For moments of a higher order, the polynomials of a corresponding order
appear as weight functions. For example, the moments of the first order can be
defined by relations

ψ1,x
i,j,k =

3
∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dxP̄1(x)
∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzψ(x, y, z) ,

ψ1,y
i,j,k =

3
∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dyP̄1(y)
∫ zk+1/2

zk−1/2

dzψ(x, y, z) ,

ψ1,z
i,j,k =

3
∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzP̄1(z)ψ(x, y, z) , (8.16)

where
P̄1(x) =

x− xi
∆xi/2

, P̄1(y) =
y − yj
∆yj/2

, and P̄1(z) =
z − zk
∆zk/2

are the first Legendre polynomial to meshes [xi−1/2, xi+1/2], [yj−1/2, yj+1/2]
and [zk−1/2, zk+1/2], correspondingly. They enable us to expand the solution in
the spatial mesh [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2] in following
manner

ψ(x, y, z) = ψi,j,k + P̄1(x)ψ
1,x
i,j,k + P̄1(y)ψ

1,y
i,j,k + P̄1(z)ψ

1,z
i,j,k +O(∆2) ,

∆ = max {∆xi, ∆yj , ∆zk} .
This presentation leads to the nodal grid scheme that is more accurate than

schemes based on moments (8.15) and the assumption

ψ(x, y, zk) = ψi,j,k +O(∆) .

8.6.1 Properties of DOM grid schemes

The grid scheme accuracy is of importance in scheme characteristics analysis.
For some schemes considered below the following estimations can be obtained:

∥∥∥�ψexact − �ψ
∥∥∥ ≤ Chq as h → 0, q = 1, 2, . . . , (8.17)

where the vector �ψ is formed by grid values of the solution moments, the vector
�ψexact consists of exact solution moments at corresponding meshes, h is the
largest mesh ‘diameter’ in terms of the optical length, C is a constant, which
is independent on h. Usually the constant C is proportional to the greatest
absolute value of some derivative from the exact solution ψ(�r, �Ω). The norm,
figuring in Eq. (8.17), is either the uniform one (being defined by the maximum
of the absolute value of the difference (�ψexact − �ψ)) or the mean square one. The
estimation (8.17) means, that the grid solution converges to the exact solution
under spatial grid refining. Under condition (8.17) the scheme is said to have
qth order of accuracy on the set of smooth solutions.

Surely, the estimations (8.17) are not valid in those sub-regions, where the
exact solution has no necessary derivatives. In particular, the exact solution is
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not smooth near the surfaces, where coefficients of transport equation are dis-
continuous (Germogenova, 1985). Besides, spatial grid dimensions are naturally
bounded by current computer capabilities, and so calculations cannot be always
performed on the basis of grids that are as fine as may be desired. Therefore, it
is impossible to be restricted to the accuracy estimations of type (8.17). Qualita-
tive properties of the grid solutions on arbitrary grids are of a significant value.
In particular, a quite important moment is that a grid solution should satisfy
some balance relation, that is a result of the transport equation integration over
a spatial mesh and over all directions. It guarantees the conservation of a photon
number in the computation process. Significant errors in the grid solution are
possible in the case when the balance relation is not satisfied.

Besides, as the computational practice demonstrates, reliable results can be
obtained only with the help of schemes, that guarantee the preservation of main
qualitative features of exact solutions. The non-negativity of the solution un-
der non-negative sources and the monotonicity of the solution along any char-
acteristics under monotonic effective source B(�r, �Ω)/Kext(�r) belong to strictly
established characteristic features of exact solutions (Bass et al., 1986). The com-
putational schemes, ensuring these essential features of grid solutions, are called
positive and monotonic schemes correspondingly. Calculations with non-positive
schemes can result in non-positive grid solutions that should be considered as
non-physical (because the function ψ(�r, �Ω) defines the positive radiance). In ad-
dition, grid solutions obtained by means of non-monotonic schemes can have
significant non-physical oscillations.

Finally, an additional feature of grid schemes for the transport equation
should be noted: the higher the scheme order, the lower the degree of posi-
tiveness and monotonicity of the grid solution.

8.6.2 Classification of grid schemes

At the step of the grid approximation construction, the left-hand side of the
transport equation (see Eq. (8.1)) can be written in two forms. In the first form
it is suggested, that the term �Ω · �∇ψ in Eq. (8.2) is the derivative in the direc-
tion �Ω:

�Ω · �∇ψ =
∂ψ

∂�Ω
.

Then the solution ψ(�r, �Ω) is defined by the formula

ψ(�r, �Ω) = ψ(�r∗, �Ω) exp

(
−
∫ |�r−�r∗|

0
Kext(�r∗ + ξ �Ω) dξ

)

+
∫ |�r−�r∗|

0
B(�r∗ + ξ �Ω, �Ω) exp

(
−
∫ |�r−�r∗|

ξ

Kext(�r∗ + ξ′ �Ω) dξ′
)

dξ , (8.18)
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If one considers the term �Ω · �∇ψ as an inner product of two vectors in (x, y, z)
geometry, the following expression for L̂ can be written:

L̂ψ = γ
∂ψ

∂z
+ η

∂ψ

∂y
+ ξ

∂ψ

∂x
+Kext ψ . (8.19)

The method of grid scheme construction based on Eq. (8.18) is known as the
characteristics method (see Fig. 8.7) because integration in (8.18) is carried out
either along the whole characteristics of the operator L̂, defined by Eq. (8.1)
(segment AB in Fig. 8.8) or along the characteristics segment, located inside a
single mesh (segment A′B′ in Fig. 8.8). In the first case we obtain long char-
acteristics schemes (section 8.7). In the second case we come to short charac-
teristics schemes (section 8.8). Construction of integro-interpolational schemes

Grid schemes 

Long characteris- 
tics schemes 

Short characteris- 
tics schemes 

Finite element 
schemes 

Integro-interpolational 
schemes 

without corrections with corrections 

relation (8.18) relation (8.19) 

Fig. 8.7. Classification of schemes.

z

x

y

A

B

A'

B'

1 2ix +1 2ix −
1 2jy −

1 2jy +

1 2kz +

kz −

Fig. 8.8. Transfer of long characteristics through the whole calculation region (line
AB) and one grid mesh (segment A′B′).
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(section 8.9) (Samarsky, 1989) and finite element schemes (section 8.10) are
based on Eq. (8.19). The grid scheme classification used in this chapter (that is
close to widely accepted one), is depicted in Fig. 8.7.

Integro-interpolational schemes may be divided into schemes with corrections
(section 8.9.2) and schemes without corrections (section 8.9.1). In the case of
schemes with corrections, each mesh is calculated first according to a non-positive
and non-monotonous scheme of a high order of accuracy. If the grid solution
is negative or possesses non-physical oscillations, the mesh is recalculated via
a lower-order accuracy scheme, which guarantees the solution positivity and,
possibly, oscillation smoothing.

If scheme equations contain spatial moments of higher order (besides zero
moments), the scheme is called a nodal one (section 8.9.3). Nodal schemes were
developed for each class, presented in Fig. 8.7. It is suggested that such schemes
may include grids with large meshes. Utilizing nodal schemes leads to an in-
crease in the calculation scope, the calculation accuracy and the complexity
being simultaneously increased. On the other hand nodal schemes provide accu-
rate calculations with coarser grids compared to lower-order accuracy schemes.
This feature leads to reduction of calculation time.

It is worth noting, that the characteristics schemes are often used in at-
mosphere optics problems (see section 8.7). Recently the code RADUGA-
5.1(P) (Nikolaeva et al., 2005a,b), based on integro-interpolational schemes (sec-
tion 8.9), has been successfully applied to the solution of the abovementioned
problems (section 8.13.2).

8.7 Long characteristics schemes

Long characteristics schemes were initially developed for the case of one-
dimensional spherical geometry (Vladimirov, 1958). They have since been ex-
tended to problems with Cartesian (x, y, z) geometry (Suslov, 1988; Postma
and Viujic, 1999; Evans, 1998). Very informative monographs (Sushkevich et
al., 1990; Sushkevich, 2005) contain, in particular, algorithms of long and short
characteristics in Cartesian and spherical geometries.

The calculation starts with the introduction of a spatial grid and definition of
a set of characteristics for Eq. (8.1) (see segment AB in Fig. 8.8, where all char-
acteristics are depicted by arrows). Several characteristics pass in each direction
�Ω can intersect a spatial mesh (see segment A′B′ in Fig. 8.8), where intersection
points of characteristics and mesh edges are denoted by spots.

Using spatial moments of the function B(�r, �Ω) in a mesh, we calculate the
values of this function at each point of each characteristic inside the mesh.
The values of the solution ψ(�r, �Ω) at points of characteristics can be found us-
ing Eq. (8.18). To decrease the calculation time, the exponents in Eq. (8.18)
can be replaced by fractional-polynomial approximations (so called Padé ap-
proximations) (Marchuk and Lebedev, 1981), which have the form exp(−h) �
(2 − h)/(2 + h) or the form exp(−h) � 1/(1 + h ).
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The zero spatial moment (8.15) of the solution in each mesh can be found as
the average of the solution over all characteristics in the same direction �Ω, inter-
secting the mesh (see Fig. 8.8). Obviously, the obtained grid solution generally
does not satisfy the balance relation. For this the special normalizing coefficients
must be introduced.

The long characteristics schemes are in some sense equivalent to the MC
methods. Just like the MC schemes, they always generate positive solutions un-
der positive sources. Besides, the schemes are capable of taking into account
the whole region with inhomogeneities accurately. On the other hand, the char-
acteristics method demands calculations for a large number of directions �Ω for
those problems, where the MC method has to use many histories, and so the
long characteristics method is a very time-consuming one.

8.8 Short characteristics schemes

In short characteristics schemes, the edges of each mesh are divided into ‘en-
tering’ (through them radiation enters the mesh) and ‘outgoing’ (through them
radiation leaves the mesh). For example in (x, y, z) geometry, if values γ and
ϕ which define the transport direction �Ω, belong to the octant {0 < γ <
1, 0 < ϕ < π/2}, then radiation enters the calculation region via the bound-
aries x = x1/2, y = y1/2 and z = z1/2 (see Fig. 8.9). Therefore, ‘entering’ edges
are x = xi−1/2, y = yj−1/2, z = zk−1/2, and ‘outgoing’ ones are x = xi+1/2,
y = yj+1/2, z = zk+1/2 (see Fig. 8.9).

The grid scheme solution at ‘entering’ edges is approximated by some contin-
uous functions. Further under these assumptions the transport equation solution
is defined via Eq. (8.18) both inside the mesh and at its ‘outgoing’ edges. At last,
the solution moments are calculated both inside the mesh and at the ‘outgoing’
edges.

According to the SC (Step Characteristics) scheme (Lathrop, 1969) the so-
lution at each ‘entering’ edge is represented by a constant, which is equal to the
corresponding value of the zero spatial moment (see Eq. (8.15)). Equations for
the grid solution calculation can be written in the following form:

1 2kz −

1 2kz +

1 2jy −

1 2jy +

1 2ix +1 2ix −

θ

ϕ

Ω

Fig. 8.9. Mesh in (x, y, z) geometry.
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ψi+1/2,j,k = ax,x ψi−1/2,j,k + ay,x ψi,j−1/2,k + az,x ψi,j,k−1/2 + aB,xBi,j,k ,

ψi,j+1/2,k = ax,y ψi−1/2,j,k + ay,y ψi,j−1/2,k + az,y ψi,j,k−1/2 + aB,y Bi,j,k ,

ψi,j,k+1/2 = ax,z ψi−1/2,j,k + ay,z ψi,j−1/2,k + az,z ψi,j,k−1/2 + aB,z Bi,j,k ,

ψi,j,k = ax,0 ψi−1/2,j,k + ay,0 ψi,j−1/2,k + az,0 ψi,j,k−1/2 + aB,0Bi,j,k .

(8.20)

where Bi,j,k is the zero spatial moment of B(x, y, z) in the mesh:

Bi,j,k =
1

∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzB(x, y, z) , (8.21)

and coefficients at,h, t = x, y, z, B, h = x, y, z, 0 depend on the transport direc-
tion �Ω {γ, ϕ}, the mesh size ∆xi, ∆yj , ∆zk, and the extinction coefficient

Ki,j,k = Kext(xi, yj , zk) . (8.22)

Here it is assumed that all coefficients of the transport equation in each mesh
are constant.

Equation (8.20) allows us to find the zero moment ψi,j,k at the mesh and
the moments ψi+1/2,j,k, ψi,j+1/2,k, ψi,j,k+1/2 at the ‘outgoing’ edges, if the zero
moment Bi,j,k and ψi−1/2,j,k, ψi,j−1/2,k, ψi,j,k−1/2 at the ‘entering’ edges are
known.

Hence, for each fixed transport direction �Ω {γ, ϕ}, the grid solution can be
defined recursively. Let the values γ and ϕ belong to the octant {0 < γ <
1, 0 < ϕ < π/2}. Then the calculation begins from the mesh [x1/2, x3/2] ×
[y1/2, y3/2] × [z1/2, z3/2]. The radiation intensity values at ‘entering’ edges, i.e.
values ψ1/2,1,1, ψ1,1/2,1, ψ1,1,1/2, are known from the boundary conditions (8.6).
Eq. (8.20) permits us to find the values of the solution at ‘outgoing’ edges, i.e. the
values ψ3/2,1,1, ψ1,3/2,1, ψ1,1,3/2. They can be considered as moments at ‘entering’
edges for meshes [x3/2, x5/2]×[y1/2, y3/2]×[z1/2, z3/2], [x1/2, x3/2]×[y3/2, y5/2]×
[z1/2, z3/2] and [x1/2, x3/2]×[y1/2, y3/2]×[z3/2, z5/2], correspondingly. So we can
calculate all the grid solution values via sorting out successively all the meshes
according to the increase of indices.

For each fixed transport direction �Ω different sequences of mesh calculations
may be used. Two possible ways for mesh sorting out in a single z-layer are shown
in Fig. 8.10. Note that the calculation sequence for �Ω directions is indifferent in
the case of Cartesian spatial geometry.

We should also note that, according to formula (8.20), the solution moment
at an ‘outgoing’ edge is the linear combination of right-side moments and solu-
tion moments at ‘entering’ edges. For example, the coefficient ax,x defines, what
fraction of radiation, entering the mesh via the edge x = xi−1/2, reaches the
edge x = xi+1/2.

Eq. (8.20) is illustrated in Fig. 8.11. All characteristics are depicted by ar-
rows, and the shaded square Sx,x corresponds to the share of edge x = xi+1/2,
illuminated by radiation, entering the mesh via the edge x = xi−1/2. Square Sx,z
is a similar share of edge z = zk+1/2.
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1 2y
1 2x 1 2Ix +
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Fig. 8.10. Sequences of mesh calculation for the layer (zk−1/2, zk+1/2).
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Fig. 8.11. Characteristics (↗) of the transport equation in a mesh.

The corresponding to pair x = xi+1/2 and x = xi−1/2 coefficient Ax,x of the
exact solution ψexact(x, y, z) can be defined by the equality

Ax,x = U/V ,

where

U =
1

Sx,x

∫
Sx,x

dy dz ψexact(xi+1/2, y, z) ,

V =
1

∆yj ∆zk

∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzψexact(xi−1/2, y, z) .

Similarly, the remaining coefficients At,h can be defined.
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Some of coefficients At,h are equal to zero. It means that radiation from the
corresponding ‘entering’ edge does not reach the corresponding ‘outgoing’ edge.
For example, if tgϕ < ∆yj/∆xi, then radiation from the edge y = yj−1/2 does
not reach the edge y = yj+1/2 and Ay,y = 0 (see Fig. 8.11).

Assuming, that the exact solution ψexact(x, y, z) is a constant at each mesh
edge, we can define the coefficients of SC scheme as coefficients of the exact
solution:

at,h = At,h|ψexact(x,y,z)=const ,

see above. In particular, if the coefficient At,h = 0, then the corresponding
coefficient of the SC scheme is also equal to zero.

The features of the SC scheme discussed above permit us to calculate both
smooth solutions and discontinuous ones in a correct way. This is confirmed by
the calculation practice as well. At the same time, the scheme is of first-order
accuracy only (in the uniform norm) (Nikolaeva, 2004), i.e. the parameter q in
the estimation (8.17) is equal to 1.

To increase the scheme accuracy, it is necessary to exploit more precise,
possibly positive, approximations of the solution at ‘entering’ mesh edges. Con-
structing such approximations, we have to use solution moments of some adja-
cent meshes. The piecewise constant function (Mathews, 1999) and the exponent
of linear function (Castriani and Adams, 1995) represent examples of positive
approximations.

More accurate representations may be created in the frames of nodal schemes,
where both zero moments and the ones of higher order are included. For example,
using moments

ψ1,y
i+1/2,j,k =

3
∆yj ∆zk

∫ yj+1/2

yj−1/2

dyP̄1(y)
∫ zk+1/2

zk−1/2

dz ψ(xi+1/2, y, z) ,

ψ1,z
i+1/2,j,k =

3
∆yj ∆zk

∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dzP̄1(z)ψ(xi+1/2, y, z) ,

compare with (8.16), we can construct the following linear approximation

ψ(xi+1/2, y, z) � ψi+1/2,j,k + P̄1(y)ψ
1,y
i+1/2,j,k + P̄1(z)ψ

1,z
i+1/2,j,k . (8.23)

The zero and the first moments of this expansion are equal to corresponding
moments of the exact solution. Similarly, approximations with polynomials of
higher order can be constructed.

As these approximations are not always positive, the corresponding grid
schemes will not be positive as well (Azmy, 1992; Elsawi et al., 2003). The pos-
itive nodal scheme of short characteristics was successfully constructed based
on long characteristics method applied to each spatial mesh (Santandrea and
Sanchez, 2002).

It should be noted that all the considered schemes have no corrections.
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8.9 Integro-interpolational schemes

8.9.1 Zero spatial moments schemes without corrections

The construction of integro-interpolational schemes in a mesh is always based
on a balance relation, which can be obtained as a result of action of the integral
operator

1
∆xi∆yj∆zk

∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy
∫ zk+1/2

zk−1/2

dz

on Eqs (8.1), (8.19). In (x, y, z) geometry, the balance relation has a form

(ψi+1/2,j,k − ψi−1/2,j,k) ξ/∆xi + (ψi,j+1/2,k − ψi,j−1/2,k) η/∆yj
+(ψi,j,k+1/2 − ψi,j,k−1/2) γ/∆zk +Ki,j,k ψi,j,k = Bi,j,k . (8.24)

Here values ψi,j,k, ψi±1/2,j,k, ψi,j±1/2,k, ψi,j,k±1/2, Bi,j,k, σt,i,j,k are defined by
the expressions (8.15), (8.21) and (8.22).

To uniquely determine values ψi,j,k, ψi+1/2,j,k, ψi,j+1/2,k, ψi,j,k+1/2, the
values ψi−1/2,j,k, ψi,j−1/2,k, ψi,j,k−1/2, Bi,j,k being known, we join the additional
equations to the exact balance relation (8.24). The WDD (Weighted Diamond
Difference) scheme is often used in calculations. The relations for radiation di-
rections from the octant {0 < γ < 1, 0 < ϕ < π/2}, being written in the
form

ψi,j,k = (ψi+1/2,j,k + px,i,j,k ψi−1/2,j,k)
/
(1 + px,i,j,k) ,

ψi,j,k = (ψi,j+1/2,k + py,i,j,k ψi,j−1/2,k)
/
(1 + py,i,j,k) ,

ψi,j,k = (ψi,j,k+1/2 + pz,i,j,k ψi,j,k−1/2)
/
(1 + pz,i,j,k) , (8.25)

are used in WDD as additional equations. Here the weight parameters px,i,j,k,
py,i,j,k, pz,i,j,k belong to the segment [0,1].

Traditionally, before solving the equations (8.24) and (8.25) in arbitrary
mesh, the first moment ψi,j,k is defined. After that the moments at ‘outgoing’
edges are calculated by means of Eqs (8.25). The approach permits to reduce
the number of arithmetic operations. Further the sequential mesh sorting, which
was outlined above for the SC scheme, is applied.

Features of a given WDD scheme depend on its weight parameters. Two
WDD schemes are often used: the DD (Diamond Difference) scheme and the St
(Step) scheme. Their weights are defined by the equalities px,i,j,k = py,i,j,k =
pz,i,j,k = 1 and px,i,j,k = py,i,j,k = pz,i,j,k = 0, correspondingly. As has been
shown (Madsen, 1975) only the DD scheme among all WDD schemes possesses
second-order accuracy in mean square norm. The WDD schemes with other
weights are of the first-order accuracy.

From the first glance, the obtained estimations indicate, that it is only worth
using the DD scheme for transport problems. However, as calculation practice
shows, really the DD solutions turn out to be negative or contain non-physical
oscillations.
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We would like to explain the reason for the mentioned effects. For this pur-
pose, we explicitly rewrite the calculation formulas of DD scheme for cubic grid
(∆ = ∆xi = ∆yj = ∆zk). For the mesh with indices i, j, k we have the following
expressions:

ψi,j,k

=
ξ ψi−1/2,j,k + η ψi,j−1/2,k + γ ψi,j,k−1/2 + ∆Bi,j,k/2

γ + ξ + η +Ki,j,k ∆/2
,

ψi+1/2,j,k

=
(ξ − γ − η −Ki,j,k∆/2)ψi−1/2,j,k + 2η ψi,j−1/2,k + 2γ ψi,j,k−1/2 + ∆Bi,j,k

γ + ξ + η +Ki,j,k ∆/2
,

ψi,j+1/2,k

=
2ξ ψi−1/2,j,k + (η − γ − ξ −Ki,j,k∆/2) ψi,j−1/2,k + 2γ ψi,j,k−1/2 + ∆Bi,j,k

γ + ξ + η +Ki,j,k ∆/2
,

ψi,j,k+1/2

=
2ξ ψi−1/2,j,k + 2η ψi,j−1/2,k + (γ − ξ − η −Ki,j,k∆/2)ψi,j,k−1/2 + ∆Bi,j,k

γ + ξ + η +Ki,j,k ∆/2
.

(8.26)

As one can verify, these equations are satisfied identically in the case of the linear
solution

ψ(x, y, z) = A+B x+ C y +D z ,

where A, B, C, D are arbitrary constants. It confirms the fact, that DD
scheme is of second-order accuracy for smooth solutions. In the addition,
zero solution moment ψi,j,k is always positive for positive Bi,j,k and mo-
ments on ‘entering’ edges. Nevertheless, moments on ‘outgoing’ edges may be
negative, if

∣∣ψi−1/2,j,k − ψi,j−1/2,k
∣∣ � 1 or

∣∣ψi−1/2,j,k − ψi,j,k−1/2
∣∣ � 1 or∣∣ψi,j−1/2,k − ψi,j−1/2,k

∣∣ � 1, i.e. if the grid solution decreases too quickly (see
Fig. 8.12).

Let ψi,j−1/2,k = ψi,j,k−1/2 = ψi+1,j−1/2,k = ψi+1,j,k−1/2 = Bi,j,k = 0. Then
Eq. (8.26) can be written in form

ψi+1/2,j,k = ρψi−1/2,j,k , ψi+3/2,j,k = ρ2 ψi−1/2,j,k , ρ =
ξ − γ − η −Ki,j,k∆/2
γ + ξ + η +Ki,j,k∆/2

.

1 2ix +ix1 2ix −

ψ The DD scheme
The St scheme
The SWDD scheme

Fig. 8.12. WDD schemes solution in a mesh.
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1 2ix +ix1 2ix −

ψ 

3 2ix +1ix +

Fig. 8.13. DD scheme solution for a pair of meshes.

As ξ − γ − η − σt,i,j,k∆/2 < 0, the coefficient ρ is negative and non-physical
oscillations in DD solutions arise (see Fig. 8.13).

Therefore, the additional relations in the DD scheme are too coarse to cal-
culate quickly varying functions.

Calculation formulas of the St scheme with a cubic mesh can be written in
the form

ψi+1/2,j,k = ψi,j,k+1/2 = ψi,j,k+1/2 = ψi,j,k

=
ξ ψi−1/2,j,k + η ψi,j−1/2,k + γψi,j,k−1/2 + ∆Bi,j,k

γ + ξ + η +Ki,j,k∆
.

These equations are converted into identities only if the solution is constant.
It is the consequence of the fact, that St scheme is of first-order accuracy for
smooth solutions. Thus, although this scheme is positive (see Fig. 8.12) it is of
low accuracy.

So we have a non-positive and non-monotonic DD scheme of second-order
accuracy and a positive and monotonic St scheme of first-order accuracy. This
fact confirms the known theorem by S. K. Godunov: it is impossible to construct
monotonic linear discretizations for hyperbolic systems of equations that would
be of second- or of higher-order accuracy, if one is restricted by zero solution
moments only.

For this reason schemes of two different classes have been developed. They
are

– positive and monotonic schemes of a higher-order accuracy as compared to
the St scheme,

– non-positive and non-monotonic schemes, which more rarely generate neg-
ative and non-physical oscillatory grid solutions for practical problems as
compared to the DD scheme.

The first class includes WDD schemes with a more flexible algorithm with
respect to the definition of weights. One such algorithm leads to the SWDD
(Special WDD) scheme (Bass and Nikolaeva, 1997; Nikolaeva, 2004), its weights
are calculated using the following equations:

ax,x(px, py, pz) = āx,x , ay,y(px, py, pz) = āy,y , az,z(px, py, pz) = āz,z .

Here the values ax,x, ay,y, az,z and āx,x, āy,y, āz,z are coefficients of Eq. (8.20)
for the SWDD scheme and for the SC scheme respectively. As it turned out, the
following assertions are valid:
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– All coefficients of the SWDD scheme are non-negative.
– Each non-diagonal coefficient (at,h for t 	= h) of the SWDD scheme is close to

the corresponding coefficient of SC scheme, if the spatial grid is a sufficiently
fine one.

– If any coefficient of the SC scheme is equal to zero, then the corresponding
coefficient of the SWDD scheme is equal to zero as well.

In other words, the features of integro-interpolational SWDD scheme are sim-
ilar to those of the SC scheme of short characteristics, and so the SWDD scheme
also can be used for calculation of discontinuous solutions (Nikolaeva, 2004).
It should be noted, however, that the SWDD scheme is slightly more accurate
than the SC one. In addition, the SWDD scheme, being convenient for the im-
plementation (the code RADUGA-5.1(P), see section 8.13.2), has demonstrated
its advantages in atmospheric optics and radiation protection problems.

It should mentioned, that the SWDD scheme weights in any mesh depend
on the radiation transport direction �Ω (that is, on γ and ϕ, mesh sizes ∆xi,
∆yj , ∆zk, and on the value of the extinction coefficient in the mesh Ki,j,k =
Kext(xi, yj , zk)). Remember, that the grid solution inside a mesh is a positive
piecewise linear function, see Fig. 8.12, whereas DD solution is a linear function,
which can be negative (see Fig. 8.12).

The MDSN1 scheme (Nikolaeva, 2004) is positive and monotonous one as
well. Coefficients of the MDSN1 scheme converge to coefficients of the SWDD
scheme under grid condensing. But insofar as the grid is coarse, these two
schemes are different.

Improved additional relations as compared to the DD scheme are used in
schemes of the second class. Sometimes the additional relations include moments
of adjacent meshes (Morel and Larsen, 1990; Adams, 1991). In other cases the
relations are obtained with the help of the analytical solution of the transport
equation (8.1), averaged over all spatial variables except some single variables
(Azmy, 1988a; Zhougsheng et al., 1994). The EC (Exponential) scheme with
non-linear additional relations (Barbucci and Pasquantonio, 1977) is worthly of
special mention. It is the scheme with relations of the kind

ψi,j,k =
√
ψi+1/2,j,k ψi−1/2,j,k =

√
ψi,j+1/2,k ψi,j−1/2,k =

√
ψi,j,k+1/2 ψi,j,k−1/2 .

Schemes based on the quasi-stationary derivatives principle (Suslov and
Pevey, 1997) are also of special interest. Differentiating the transport equation
(8.1) with respect to each spatial variable and equating all second derivatives to
zero (here the solution is suggested to be slowly varying), one can find approx-
imate expressions for the first derivatives of B(�r, �Ω). Using these expressions,
more accurate representations for both B(�r, �Ω) and the solution can be con-
structed.
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8.9.2 Zero spatial moment schemes with corrections

The impossibility of constructing a positive and monotonous scheme of second-
order accuracy forces us to use schemes with corrections. As a result WDD
schemes with corrections have been actively developed. In these schemes, first
a mesh is calculated via a DD scheme and then, if the grid solution turnes out
to be a negative one or even oscillatory, the mesh is recalculated via a WDD
scheme of first-order accuracy.

The earliest of the schemes is the DD/St scheme, where the mesh recalcula-
tion is carried out via the St scheme, if at least one of ‘outgoing’ edges provided
a negative moment of the solution. However, correction of this kind is too rough,
because the weight values undergo jumps inside a mesh. Thus, these schemes are
positive, but non-monotonous ones.

More flexible corrections are exploited in the positive and non-monotonous
θWDD scheme (Rhoades and Engle, 1977; Petrovic and Haghighat, 1996). Fi-
nally, an algorithm of oscillation smoothing is included in the grid equations
of the AWDD (Adaptive WDD) scheme (Carlson, 1976; Voloschenko and Ger-
mogenova, 1994). Here the user can choose the degree of oscillation smoothing
via the specification of the parameter for monotonization of the solution. In
MDSN scheme corrections the numerical algorithm relies on the condition of
monotonicity of the grid solution (Voloschenko, 1981).

In multidimensional problems, both MDSN and AWDD schemes require the
iterative construction of scheme equations in each mesh to ensure grid solution
monotonocity for all variables. Usually one needs to use one or two iterations.
Under many iterations, MDSN equations tend to equations of the monotonous
MDSN1 scheme (Nikolaeva, 2004). In slab geometry MDSN and MDSN1 schemes
are equivalent.

Finally, in some cases corrections are carried out via an MDSN scheme in
selected meshes, adjoint to the surfaces, where transport equation coefficients
undergo discontinuities. Here it is presupposed that oscillations arise mainly in
such meshes. Corrections are performed just in the mesh set. Numerical results
show that monotonization techniques only slightly smooth oscillations.

8.9.3 Nodal schemes

To complete our review of modern numerical schemes for the solution of the
transport equation, we describe the so-called the nodal integro-interpolational
schemes. Spatial moments of zero- and first-order (and sometimes higher orders)
are used in these schemes for the construction of grid equations.

Several balance relations are used in the scheme construction. Each of the
balance relations is obtained via integration of the transport equation (8.1) over
a spatial mesh with an appropriate weight function. In some nodal schemes, the
additional relations are based on the non-positive polynomial (Walters, 1982,
1986; Badruzzaman, 1985; Azmy, 1988b; Warin, 1996; Voloschenko, 1997; Zmi-
jarevic, 1999; Takeda and Yamamoto, 2001), the piecewise polynomial (Voronkov
and Sychugova, 1997) or the exponential (Ullo et al., 1982) representations of a
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grid solution in a mesh. Although these schemes have a high order of accuracy
(up to four), usually they are neither positive nor monotonous.

Positive nodal integro-interpolational schemes are of lower-order accuracy
(second to third) than non-positive ones. They are based on the approximation
of the solution via piecewise constant (Mathews and Minor, 1991), piecewise
linear (Mathews and Minor, 1993) or exponential linear (Walters et al., 1995;
Wareing, 1997) functions.

Nodal schemes with corrections are also actively developed. They combine
the preliminary grid calculation via non-positive and non-monotonous scheme
of high order and its consequent recalculation via a positive and a partially
monotonous scheme of a lower-order accuracy (Voloschenko, 1997; Shwetsov,
1997).

8.10 Finite element schemes

At preliminary step of the construction of finite elements schemes, a specific
basis of functions {ug(�r, �Ω)}, g = 1, . . . , G is chosen. The solution in each mesh
is represented by a linear combination:

ψ(�r, �Ω) � ψ̃(�r, �Ω) =
G∑
g=1

ug(�r, �Ω)Tg .

Coefficients Tg are defined by equating mesh solution moments at mesh edges to
corresponding moments of ψ̃(�r, �Ω) representation. Further the residual R(�r, �Ω)
for the function ψ̃(�r, �Ω) via Eq. (8.1) is calculated:

R(�r, �Ω) = L̂ψ̃(�r, �Ω) −B(�r, �Ω) .

After that the scheme equations are defined via the integration of the equality
R(�r, �Ω) = 0 over the mesh. Also some weight functions, which in the general case
do not coincide with basis functions ug(�r, �Ω), are used. The chosen functions
ug(�r, �Ω), defining grid solution form, are named finite elements.

Using only zero spatial moments and bilinear combinations of functions
ug(�r, �Ω), one can successfully construct an effective calculation scheme (Morel
et al., 1993).

Using moments of high orders, nodal schemes of finite elements can be created
(Hennart and del Valle, 1997; del Valle and Alonso, 2001).

8.11 The solution of the grid equation

The previous sections were aimed at the construction of the grid equation, ap-
proximating both the differential operator L̂ and the integral operator Ŝ in the
transport equation (8.1). As a result we find a system of linear algebraic equa-
tions
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L̂grid �ψ = Ŝgrid �ψ + �Q , (8.27)

where the vector �ψ is formed by grid solution values in all meshes of spatially-
angular grid, and grid operators L̂grid and Ŝgrid correspond to the differential
operator L̂ and the integral operator Ŝ. In section 8.7 an explicit method, based
on operator L̂grid inversion, was presented. The system (8.27) is solved using the
simple iteration method :

�ψit+1 = (L̂grid)−1[Ŝgrid �ψit + �Q] . (8.28)

Iterations are stopped when the relative variation of a scalar flux (i.e. solution
averaged over angle variables) inside all spatial meshes is less then a value of ε (ε
being specified by a user). Usually the values ε inside the interval (0.0001–0.001)
are used in calculations.

Insofar as the operator Ŝgrid describes light scattering processes, each new
iteration adds to a grid solution contribution, provided photons undergo the next
order of scattering. Therefore, the method (8.28) is known as successive-orders-
of-scattering method (SOSM).

If the size of the calculation region, measured in optical lengths, is large and
absorption is weak (the typical situation for atmospheric optic problems in the
visible and UV range), then on the average a photon undergoes a great number
of scatterings, and so the iterative process (8.28) converges very slowly.

The Seidel scheme of Eq. (8.27) solving has proved to be more effective. It
consists in obtaining solution values inside a separate octant at each iteration and
subsequently utilizing them for Eq. (8.27) right-hand side calculation for other
octants at the same iteration. This method is slightly more effective in solving
Eq. (8.27) as compared to SOSM. Two-layer iterative schemes have proved to
be even more effective. Their equations can be written in the form:

L̂grid �ψit+1/2 = Ŝgrid �ψit + �Q , �ψit+1 = �ψit+1/2 + �δit+1/2 (8.29)

The equations for corrections �δit+1/2 are constructed based on the fact that the
equation for a grid solution error �Eit+1/2 = �ψ − �ψit+1/2 satisfies the following
relation:

L̂grid �Eit+1/2 = Ŝgrid �Eit+1/2 + Ŝgrid(�ψit − �ψit+1/2) .

Hence, the correction �δit+1/2 can be naturally defined via some approximations
of the vector �Eit+1/2. In a wide class of methods, a correction �δit+1/2 can be
sought in the low approximation over angular variables (Adams and Larsen,
2002), vector �δit+1/2 being a linear function or a constant in each octant with
respect to angular variables. Similar methods were successfully exploited in radi-
ation shielding problems, because they make it possible to decrease the number
of iterations tens or hundreds of times. But they are proved to be inapplicable
in atmospheric optics problems, where light is scattered mostly in the forward
direction and the correction �δit+1/2 cannot be approximated by a polynomial of
a low order. For this case, multigrid angular methods were developed, where cal-
culations are performed at a sequence of angular grids for each iteration (Morel
and Manteuffel, 1991; Pautz and Morel, 1999). Correction to a finer grid so-
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lution is obtained via a coarser grid calculation. After adding all the obtained
corrections, a new iteration begins with the finest grid.

All listed methods are effective (the number of iterations decreases in order),
if only the correction equations are consistent with initial grid (Eq. (8.27)), i.e. if
correction equations are a consequence of Eq. (8.27). It should be noted that the
consistent correction system is more complicated as compared to the inconsistent
one.

An effective iterative scheme construction for problem (8.27) is rather difficult
due to the fact that the operator (L̂grid)−1Ŝgrid is not self-adjoint in practical
problems. Among all methods developed for systems of type (8.27), only the
methods by Krylov (Morel, 2005), which do not use the suggestion of the op-
erator self-adjointness, are proved to be applicable here. In these methods, the
corrections �δit+1/2 can be presented by the linear combination of vectors �vµ:

�δit+1/2 =
M∑
µ=1

�vµ βµ .

The vectors �vµ should be chosen from the space formed by residual vectors

{�rµ, µ = 1, . . . ,M} : �r1 = (L̂grid − Ŝgrid)�ψit+1/2 − �Q , �rµ = (L̂grid − Ŝgrid)�rµ−1 .

The coefficients βµ can be found from the condition of the residual minimum for
equations (8.27) in mean square norm, i.e. from the minimum condition for the
sum of squares of elements of the vector

�Y = (L̂grid − Ŝgrid) (�ψit+1/2 +
M∑
µ=1

�vµ βµ) − �Q .

As a result, coefficients βµ are defined by a system of linear algebraic equations
of the order M × M.

In each version of the methods by Krylov the vectors �vµ are constructed
in own manner, based on vectors �rµ. The conjugate gradient method, the least
squares technique, the quasi-minimal residual algorithm, the generalized minimal
residual method and many other approaches use different ways to construct and
also to store vectors �vµ. The number M of vectors is also different in different
approaches.

The acceleration degree of methods by Krylov is increased when the number
M of vectors �vµ increases, but the calculation of vectors and scalar products is
very time-consuming. If the number M is too large, the method is not effective.

8.12 Technique of transport equation solving
by the parallel discrete ordinates method

The appearance of parallel-architecture computers has led to a new step in the
development of numerical techniques. Obviously, the parallel algorithm construc-
tion should correspond to architecture particularities of concrete multiprocessor
computers.
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There are two main types of multiprocessor systems. In weakly connected
systems with distributed memory each processor possesses its own disk and op-
erative memory and is able to send data to other processors only via a common
network. The information exchange speed between different processors here is
lower than one between a single processor and its operative memory. Such kinds
of multiprocessor systems can contain a lot of processors (more than a thousand).

In strongly connected systems all the processors have an extensive shared
(common) memory. By means of the shared memory the processors perform the
information exchange. The operation system should be capable of preventing er-
rors, which may arise when two or more processors simultaneously deal with the
same memory cell. The number of processors in the strongly connected systems
is essentially smaller than in weakly connected ones.

The modern architecture is the so-called nested parallelism, where a distrib-
uted-memory machine (called a cluster) has embedded nodes with several (2, 4,
8) processors. In these machines two mechanisms are used for the communica-
tion: (a) shared memory when processors belong to the same node; (b) network
communication when the processors belong to the different nodes.

The effectiveness of a parallel algorithm is defined by the formula

Eff(N ) = T (1)/[N T (N )]100% , (8.30)

where N is processor number, T(1) is the calculation time for a single processor,
T (N ) is the calculation time for N processors. Obviously, the more uniform
is the calculation distribution among all the processors the higher is parallel
algorithm effectiveness, and so the less time it takes for a single processor to
exchange information with other processors.

The parallelizing technique depends on the problem type. If the line-by-
line calculation is carried out, then a high effectiveness of parallelizing can be
achieved by means of the uniform distribution of problems for different wave-
lengths among all processors.

A parallel algorithm for the long characteristics method can be reduced to
the proportional distribution of the calculation of different characteristics among
the processors (Dahmani et al., 2003).

The parallel algorithm for solving transport problems for a single wavelength
can be based on the calculation region decomposition. In the case of the angular
decomposition (Azmy, 1988b) at one iteration all nodes of angular quadrature
are distributed among different processors and the solution at each node is cal-
culated by the corresponding processor. This kind of parallelizing implies that
each single processor should transmit to previously chosen summarizing proces-
sor solution values at all the meshes to provide the consequent scattering integral
calculation. After that each processor should get from the summarizing proces-
sor the scattering integral values at all spatial meshes. Similar algorithms should
be realized on strongly connected computers in order to increase the high calcu-
lation effectiveness under a great number of information exchange operations.

If a spatial decomposition is used, the calculation region is divided into sub-
regions, incoming radiation fluxes being supposed to be known at the sub-region
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boundary. The fluxes are known either from boundary conditions or via neigh-
boring sub-region calculations at a previous iteration (Hanebutte and Lewis,
1991; Haghighat and Azmy, 1991; Baker et al., 1995; Pautz, 2001).

In some cases the decomposition is realized both on spatial and on angular
variables (Dorr and Salo, 1995; Sjoden and Haghighat, 1997; Nowak and Ne-
manic, 1999; Fischer and Azmy, 2003). Specially developed expert systems per-
mit the estimation of time and memory expenses for each decomposition type
(spatial, angular or spatially-angular) for each concrete calculation (Patchim-
pattapong and Haghighat, 2003).

Different calculation procedures for sub-regions are possible. For example,
each sub-region can be computed by own processor at each iteration (Haghighat
and Azmy, 1991). In the last case the algorithm includes two iterative processes:
one for the calculation of the scattering integral and yet another one for the
calculation of the solution values at sub-region boundaries. Naturally, with the
number of sub-regions the necessary number of iterations increases as well. Be-
sides, the obtained grid solution usually does not coincide with that obtained
by a single processor at each iteration. Special parallel acceleration algorithms
should be developed in such cases.

Accordingly to the ‘red-black algorithm’ (Hanebutte and Lewis, 1991; Sjoden
and Haghighat, 1997), all the sub-regions are specified as ‘red’ or ‘black’. At
each iteration either only ‘red’ sub-regions or only ‘black’ ones participate in the
calculation procedure (see Fig. 8.14). It permits to obtain more accurate values
of entering fluxes at sub-region boundaries at each iteration.

According to the ‘diagonal scheme’ (Baker et al., 1995; Dorr and Salo, 1995),
for any transport direction �Ω, a special sequence of sub-region calculations, based
on chosen angular quadrature, is used. For example, calculation begins with the
left lower corner for a direction �Ω {γ, ϕ} at {0 < γ < 1, 0 < ϕ < π/2} (see
Fig. 8.1). The sequence is shown in Fig. 8.15. A number, marking each sub-
region in Fig. 8.15, denotes the iteration number of sub-region participation in
the common calculation procedure. In this case the solution, obtained by the
parallel method, coincides with one obtained via a single processor method.
Thus, it makes possible to use, in a parallel calculation, procedure acceleration
algorithms which have been developed for single-processor calculations.

x

y

Red Black Red

Red Red

Red Red

Black

Black Black

Black Black

Fig. 8.14. Red-black algorithm scheme.
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Fig. 8.15. Diagonal scheme.

8.13 Discrete ordinates codes

The project I3RC (http://i3rc.gsfc.nasa.gov) is of a great importance in 3D
radiation transport (RT) codes verification. ‘The goal of I3RC is to promote
the improvement of algorithms that are used for all kinds of 3D RT processes
in cloudy atmospheres. Activities include not only comparisons of results from
state-of-the-art 3D RT codes, but also development of fast approximations that
are more suitable for climate applications and community “open source” codes
that distill the best current knowledge on how to treat the various interactions
of ultraviolet, visible, and infrared photons with atmospheric constituents’ (Ca-
halan et al., 2005).

For these purposes a number of test problems have been formulated for the
verification of DOM and Monte Carlo algorithms. Participants in this project
just created the codes providing calculation of the test problem with the required
accuracy.

The main DOM code is SHDOM (Evans, 1998); recently RADUGAP-5.1(P)
was included in the list of codes being used. Other results were obtained by
Monte Carlo codes.

Now the project consists of three phases aimed at calculations of 1D, 2D
and 3D problems accordingly. The authors suggest that ‘the cloud and climate
modeling community is further ahead of its remote sensing counterpart in incor-
porating the advances of 3D RT into its representation of radiative processes’.

8.13.1 SHDOM code

Currently the code SHDOM (Evans, 1998), belongs to widely used codes for
the calculation of radiation transport in the terrestrial atmosphere (http://
nit.colorado.edu/∼evans/shdom.html). Let us list its main attributes.

– The transport equation is solved in regions with Cartesian 1D, 2D and 3D
coordinates (see Fig. 8.2).

– The radiation source is the Sun or thermal sources.
– Phase functions are represented by expansions on Legendre polynomials, the

expansion order being arbitrary. To decrease the number of polynomials in
the expansion, the delta-M method can be used (Wiscombe, 1977).
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– Transport equation coefficients (the extinction coefficient, the single scatter-
ing albedo, the number of moments in phase function expansions) are defined
by their values at spatial grid nodes.

– The boundary condition on the region external boundaries can be specified as
periodicity condition or as boundary reflection law (in particular, the mirror
reflection law and the Lambert reflection law are included).

– The transport equation for scattered radiation intensity is solved by the
long characteristic method. Non-scattered radiation intensity is determined
analytically.

– The spatial grid is defined by a user; it can be refined during the calculation
procedure, if it is necessary for more accurate solution presentation.

– The simple iterative method with respect to scattering orders is used for solv-
ing grid equations; the iteration acceleration method, representing a version
of the minimal residual method for a single-processor computer, is included.

The SHDOM is the numerical code for wide-range applications. Although a
version of the long characteristics method is used in the code, it does not include
the balance equation for a grid mesh. Besides, the acceleration method stability
proof is absent. In some cases the iterative process does not converge.

8.13.2 The code RADUGA-5.1(P)

The code RADUGA-5.1(P) solves the transport equation in 2D and 3D regions
under sufficiently common suggestions on source, phase functions and boundary
conditions (Nikolaeva et al., 2005a,b). In particular, it may be used in such areas
as atmospheric optics, radiation shielding problems, biomedicine, ray therapy,
etc.

Below we outline the main characteristics of the RADUGA-5.1(P) code.

– The transport equation is solved in regions with Cartesian (x, y, z), (x, y)
and cylindrical (r, ϑ, z), (r, ϑ), (r, z) coordinates (see Fig. 8.2 and Fig. 8.16).
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Fig. 8.16. Calculation regions with cylindrical coordinates.
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– The radiation source may be given in the form of plane-parallel radiation
flux (the Sun) or uniform radiation distribution in all directions (e.g., heated
body).1

– Phase functions can be represented by expansions on Legendre polynomials,
the expansion order being arbitrary, or by discrete-angular forms.

– Medium inhomogeneities are defined via surfaces of some model bodies (par-
allelepipeds, cylinders, spheres, cones, prisms and others). Transport equation
coefficients (the extinction cross-section and the single scattering albedo) can
be also defined at the nodes of a spatial grid.

– Periodic boundary conditions, the mirror reflection or the Lambert reflection
law may be defined over any external boundary. The boundary condition at
semi-infinity is also included.

– Angular quadratures of several widely used types (in particular, Carlson and
Gauss quadratures) can be used for the scattering integral approximation;
regular spatial grids are also used.

– Unscattered radiation intensity is calculated analytically. Grid schemes of
first and second accuracy order of well known WDD family (DD, St, DD/St,
AWDD, SWDD) are used for scattered radiation calculation.

– After spatial decomposition of a calculation region into sub-regions, the local
spatial and angular grids may be introduced in each of them.

– Condensing of angular grids inside some solid angles is admissible.
– The simple iteration method with acceleration by the minimal residuals

method is used for grid equations solving.
– The parallel algorithm is designed based on the international MPI standard.

The spatial decomposition is used, each sub-region being calculated at each
iteration.

– Calculation time is decreased while processor number N is increased, but the
calculation time is not proportional to N . So, the effectiveness of parallelizing
is decreased as processor number increases (see (8.30)). In the case of a weakly
connected computers with 20 processors the effectiveness is equal to 90%. If
the number of processors is between 20 and 80, the effectiveness is near
65%. When the processor number is increased up to 200, the effectiveness is
decreased up to 50%. The effectiveness reduction could be associated with
increasing time of information exchange between processors.

– The code construction makes it possible to carry out calculations on weakly
connected, on strongly connected and on clusters of multiprocessor comput-
ers, including personal computers.

Let us briefly outline the semi-infinity boundary condition, which is used in
the case of a semi-infinite medium. An example is shown in Fig. 8.17, where both
aerosol and cloud media are homogeneous and they possess a common vertical
boundary.

1The code RADUGA-5.1(P) may be applied to solve problems with other sources.
They are point isotropic, point anisotropic (in particular, source radiating in a cone of
a small aperture) and ray sources.
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Fig. 8.18. Semi-infinity condition at the left boundary.

The semi-infinity condition with respect to variable x at the left boundary
x = xL can be expressed by the formula (see Fig. 8.18):

ψ(xL, y, z, �Ω) = ψ(x∗, y, z, �Ω) , −1 < γ < 1, 0 < ϕ < π/2 or 3π/2 < ϕ < 2π ,
(8.31)

Equation (8.31) guarantees the solution independence on the variable x far from
the boundary of the media. Moreover, far from the boundary the solution can
be approached by the constant, which can be defined from the corresponding 1D
model.

Verification of the code RADUGA-5.1(P) was carried out, based on the model
problem, depicted in Fig. 8.17. Aerosol scattering was modeled by the Heney–
Greenstein phase function with asymmetry parameter g = ω1/3 = 0.7. The cloud
C1 phase function (Kokhanovsky, 2006) was obtained based on Mie theory for
the wavelength 412 nm. The asymmetry parameter g is equal to 0.86. Layer
height is equal to 4 km, cloud optical thickness is chosen to be 30, aerosol optical
thickness is equal to 1.2. Photons enter the layer only via the top boundary z = 0
(see Fig. 8.17).
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Fig. 8.19. Brightness coefficient in the model problem.

The brightness coefficients R(x) = π ψ(x, 0, 0)/(F0 cosΘ) for the radiation
reflected in the zenith at the visualization line for two solar light directions
Θ = 60◦, Φ = 0◦ and Θ = 60◦, Φ = 180◦ are depicted in Fig. 8.19. Here
F0 is intensity of incident radiation. Solar light direction is shown by arrows.
Calculation results for the same problem, performed by the Monte Carlo method
(code MYSTIC) (Mayer, 1999), are presented in Fig. 8.19 as well. The difference
between results, obtained by two different methods, is less than 1% in the areas
far from the boundary and less than 4.5% near the boundary, where the exact
solution possesses great gradients.

The constant value of brightness far from the boundary can be obtained
based on the slab model. The code ROZ-6.5 (Averin et al., 1991), was used
for transport problem calculations in the optically thin aerosol slab, whereas
asymptotic formulas were applied for radiation obtaining in optically thick cloud.
The difference between results, obtained via RADUGA-5.1(P) and 1D results is
less than 1%. This fact confirms, that the boundary condition (8.31) properly
imitates the semi-infinite medium.

Two imitations of really observable atmospheric phenomena can be seen in
Fig. 8.19. These are the cloud shadow (minimum of light brightness in aerosol
slab near Φ = 180◦) and brightening (brightness maximum in aerosol slab near
Φ = 0◦). These two effects are primarily caused by the direct light transfer
through a scattering medium. They are relevant not only in the case of a simple
model of a semi-infinite homogeneous cloud but also for more general broken
cloud systems. They demonstrate the influence of the vertical medium boundary
on scattered radiation brightness near this boundary and can be used to study
radiative edge effects of cloud optics (Kokhanovsky, 2006).
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8.14 Simplified discrete ordinates models

8.14.1 Accuracy estimation for simple 1D models

The solution of inverse problem s and radiance balance calculations in climate
models are currently carried out mainly by means of simple 1D models, where
radiation transfer in horizontal directions is not taken into account. The plane-
parallel slab model (PP) and the independent column approximation (ICA)
belong to the class of 1D models. In the frames of the PP model a cloud is
considered as horizontally homogeneous, whereas in the ICA a cloudy model is
composed of large homogeneous parallelepipeds (pixels). In the framework of
ICA the parallelepipeds can also possess a stratified structure. Such an approx-
imation is also called Independent Pixel Approximation (IPA).

In last decade a great number of papers have studied the features and ac-
curacy of these 1D models under a variety of atmospheric parameters. In our
opinion, the main conclusion was formulated by Marshak and Davis (2005): ‘It
is time to think of 3D theory as the golden standard in atmospheric radiative
transfer rather than a perturbation of standard 1D theory’. However, we mention
here some results obtained via 1D models to complete the picture.

The capabilities of the ICA model were analyzed in problems of short-wave
radiation propagation through deep convective clouds (Giuseppe and Thomp-
kins, 2003) by means of the code SHDOM (Evans, 1998). It has been shown,
that energy imbalance is mainly caused by two opposing effects: side illumina-
tion and shadowing (see Fig. 8.19). The comparison between ICA and PP models
shows that for deep convective clouds geometry-related effects can have a larger
influence on radiative transfer calculations than the internal optical inhomo-
geneities. Similar results were obtained for ultraviolet light transfer problems as
well (Scheirer and Macke, 2003). The shortcomings of these investigations are
indicated by Giuseppe and Thompkins (2003). They are due to the simplified
model of the cloud structure. Hence, the characteristic radiative biases, obtained
in the frames of the 1D models, cannot be applied to most real situations. The
numerical experiment example and the results obtained are depicted in Table 8.1
and Figs 8.20 and 8.21.

Table 8.1. Reflectance, transmittance, and absorptance for IPA and PP biases for
two numerical experiments (the solar zenith angle (SZA) is equal to 0 (SZA0) and 60
(SZA60) degrees) (after Guiseppe and Thompkins, 2003)

IPA Bias SZA0 PP Bias SZA0 IPA Bias SZA60 PP Bias SZA60

Abs. Rel.% Abs. Rel.% Abs. Rel.% Abs. Rel.%

Reflectance 0.016 16 −0.023 −19 0.013 8.6 −0.0095 −5.9
Transmittance 0.024 3.4 0.023 3.5 −0.018 −2.8 0.0082 1.3
Absorptance −0.040 −23 0.0 0.0 0.0049 2.3 0.0013 0.63

Abs., absolute; Rel., relative.
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Fig. 8.20. Scheme of the redistribution of the radiation between clear and cloudy
columns. The clear regions surrounding cloudy columns undergo an enhancement of
fluxes with an associated warming (W, lighter shading) in the Sun-overhead case due
to the ‘spilling’ of radiation from the cloud to the clear region and due to the horizontal
transport of photons. The opposite happens when the Sun is set at degree zenith angle,
with an increased role of shading (darker shading), while clear- sky heating rates on
the sunny side of the cloud are enhanced (after Guiseppe and Thompkins, 2003).

Fig. 8.21. Reflectance, transmittance, and absorptance for the two experiments SZA0
and SZA60. The calculation is performed for the whole domain using the full 3D
radiative transfer, the independent pixel approximation (IPA), and plane-parallel (PP)
methods (after Guiseppe and Thompkins, 2003).

Horizontal radiation transfer in clouds, modeled as inhomogeneous stratified
columns, and its influence on cloud energy absorption was investigated by Titov
(1998) for the case of lognormal particle distribution and the power law of energy
spectrum of cloud depth. In addition, a realistic fractal cloud model was used. It
was shown in the frames of the ICA model, that the contribution of the horizontal
component to the full radiation field in clouds possesses the following features:
(1) it is comparable with transmitted and absorbed radiation; (2) it is strongly
dependent on cloud fractal structure and optical depth. The results allow us to
conclude that in the majority of situations neglecting horizontal transport will
lead to uncertainties in absorption estimations (anomalous absorption). Besides,
not accounting for the horizontal transport will result in violation of the one-
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to-one correspondence between optical and radiative pixel characteristics. Two
possible ways of overcoming the difficulties mentioned are discussed in the paper.

The smoothness properties of radiation fields for stratified clouds, horizontal
fluctuations of extinction, modeled via multiplicative cascades, were analyzed by
Marshak and Davis (1995). As it turns out, the ICA model can be applied for
sufficiently large pixels, whereas in the case of small pixels (i.e. pixel sizes less
then 200–500 m) the ICA highly underestimates the liquid water variability in
clouds.

A novel approach for 3D effect estimation and exclusion is proposed by Varnai
and Marshak (2002). The method is based on satellite image analysis, that is
to say, on the estimation of reflective cloudy brightness for visible and thermal
infrared light. This technique makes it possible to decrease errors in the problem
of cloud optical property reconstruction by means of ICA models, although the
errors cannot be excluded completely. The necessity of 3D model introduction for
processing reflected radiation fields, obtained in real measurements with high-
resolution accuracy, has been also stressed by Marshak and Davis (1998).

Some final results of longstanding extended studies of 1D atmosphere models
are presented in a detailed investigation by Barker et al. (2003). Here 1D and 3D
model comparison was carried out in the frames of three test problems, typical
for tropical atmosphere:

clear-sky – clouds and aerosol are absent, slab height is near 100 km.
CLOUD A – low cloudiness (a cloud is located between 3.5 and 4 km).
CLOUD B – high cloudiness (a cloud is located between 10.5 and 11 km).

The calculation accuracy of three parameters has been studied. These are

– αp – top-of-atmosphere albedo,
– αatm – atmospheric absorption,
– αsfc – surface absorption.

3D calculations were performed by the Monte Carlo method by means of four
different codes. Deviations in the obtained results were less than 2%.

Twenty-five codes carried out 1D calculations, the line-by-line model being
realized in two of them. Obtained results essentially differ among themselves and
strongly deviate from 3D results. In particular, 1D models underestimate the
value αatm on the average by 15–25 Wm−2, independently of cloud presence, for
the problem with the Sun at zenith. Errors in 1D calculations are usually about
10% and even more. An example of a top-of-atmosphere albedo calculation is
presented in Fig. 8.22. These facts give the authors the opportunity to conclude
that a new methodology of radiation field calculations in large-scale models is
very necessary. New codes should be fast and operative.

Results obtained by Kokhanovsky (2003a, 2005) can be used in problems of
algorithm development. A important case of 3D light scattering problems in a
turbid medium layer is considered in these papers. It is shown that in the case
of optically thick layer the statistical distributions for reflected, transmitted and
absorbed radiation are related via simple analytical expressions with the statis-



8 Radiative transfer in inhomogeneous turbid media 333

Fig. 8.22. Dashed lines represent broadband TOA albedos as a function of solar zenith
angle cosines for the homogeneous CLOUD A (lighter lines) and CLOUD B (darker
lines) predicted by all 1D codes assuming maximum/random overlap. Solid lines are
corresponding values for one of the 3D MC codes (after Barker et al., 2003).

tical distribution of the optical thickness. These expressions may be applicable
to both direct and inverse problem s of cloud optics.

8.14.2 Spherical atmosphere models

The 3D spherical coordinate system exactly corresponds to the terrestrial atmo-
sphere geometry (see Fig. 8.23).

The transport equation in the spherical geometry is solved mainly by a Monte
Carlo method. However, it is not always possible to use MC methods for atmo-
spheric radiation field calculations (Ougolnikov, 1999) – because of large optical
thickness of cloudy atmosphere. From this and other works we can see that grid
spherical atmospheric models should be developed.

Currently algorithms, based on mesh schemes of the discrete ordinates
method, are included in a small number of codes only. They use the charac-
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Fig. 8.23. 3D spherical coordinate system.
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Fig. 8.24. Example of characteristics intersection scheme with a grid mesh in spherical
coordinate system.

teristics method, where the transport equation is written in the integral form
(see (8.18)). Integration in (8.18) is carried out along characteristics of the dif-
ferential operator L̂ (see Eq. (8.2)). An example of characteristics propagation
through a curvilinear mesh in 3D spherical geometry is shown in Fig. 8.24, where

– AB – characteristics segment inside the mesh,
– ri – grid node radii,
– ϑj – grid node latitudes,
– φk – grid node longitudes,
– �Ω (θ�, ϕm) – grid node angles of viewing.

Figure 8.24 demonstrates the main difficulty arising in solving the transport
equation in spherical geometry: its own local coordinate system for viewing an-
gles {θ, ϕ} is being used at each spatial point {r, ϑ, φ}, and so viewing angles in
a local coordinate system are changing, when the viewing point is moved along
characteristics (see points B and A).

Because the right-hand side of transport equation (8.1) depends on ψ(�r, �Ω)
(that is, on the solution sought for), the iterative process on successive scatterings
is usually applied to calculate ψ(�r, �Ω).

An example of the algorithm of the transport equation being solved in 3D
spherical geometry is presented in the work of Emde (2005). It is given in detail
the next section.

So-called ‘limb’ observations play an important role in atmospheric investi-
gations. Their scheme is presented in Fig. 8.25, where θT and φT are zenith and
azimuth solar angles respectively (Griffioen and Oikarinen, 2000). Now these
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Fig. 8.25. ‘Limb’ observation scheme.

observations are performed by means of satellites for different spectral ranges.
They permit

– detection of aerosol layers in the atmosphere,
– measurement of the temperature of the stratosphere, ozone concentration in

the mesosphere and concentration of NO2 in the stratosphere.

In the codes, which are intended for ‘limb’ observation treatments, the sim-
plified combined models are used, because much time is required to solve the
transport equation in 3D geometry.

These combined models are usually pseudo-spherical, because the scattering
integral, defining multi-scattered radiation intensity, is calculated in the frames
of the plane-parallel model. The examples are:

(a) model LIDORT (Linearized Discrete Ordinate Radiative Transfer) (Spurr,
2002);

(b) model LIMBTRAN (Griffioen and Oikarinen, 2000);
(c) model CDI (Combined Differential-Integral) (Rozanov et al., 2001), where

light refraction is taking into account.

Besides, special spherical models are developed. Among them there is the
model CDIPI (CDI Picard Iteration), based on characteristics method in com-
bination with successive scattering order iterations. Here the initial approxima-
tion is calculated by means of the pseudo-spherical model CDI of Rozanov et al.
(2000), refraction effects being taken into account.

The spherical model GSS (Gauss–Seidel Spherical) is intended for radiation
intensity calculation in fixed desired radial directions (Herman et al., 1994). For
the purpose a cone with a vertex in the Earth’s center is constructed, the de-
viation angle between cone generatrix and the considered direction being equal
to ϑ0 (see Fig. 8.26). A grid over cone height with nodes R0 + ri, i = 1, 2, . . . ,
where R0 is the Earth’s radius, is introduced inside the cone. The transport
equation solution inside the cone is calculated via the characteristics method in
the frames of 1D spherical model. To determine the radiation intensity, entering
the cone, it is assumed that the ratio of multiply scattered to unscattered light
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Fig. 8.26. Spatial grid and conical boundaries in the spherical model GSS.

intensity is constant over the atmospheric shell. A special iterative scheme has
been constructed, taking into account both successive radiation scattering orders
and boundary conditions. It provides a fast and accurate technique for finding
the solution. Results of calculations obtained via both the MC method and other
methods were used for model testing. The solutions obtained by the other grid
methods were employed too. The interval of admissible angle ϑ0 variation was
found. The angles are between 0.25◦ and 2◦. Detailed comparison of reflected
and transmitted light intensity for spherical and plane-parallel atmospheres for
different solar and viewing angles has been carried out. Reflection from the Earth
was not taken into account. Numerous illustrations were prepared for 50-km at-
mosphere, the Earth’s radius being assumed to be equal to 6380 km. Figure 8.27
given by the authors clearly demonstrates the influence of the sphericity of the
Earth’s atmosphere.

Fig. 8.27. Ratio of spherical- to flat-atmosphere transmitted intensities at the surface
for a scattering atmosphere with a 0.50 optical depth. Left-view azimuth = 0 degrees,
right −180 degrees (after Herman et al., 1994).
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Fig. 8.28. Spherical model GSLS.

It should be noted that iterations over boundary conditions, being taken
into account in the model, can be more easily performed both in (x, y) and in
(x, y, z) geometries (see section 8.14). The boundary condition inclusion enables
us to decrease the calculation time. However, a theoretical base for this inclusion
is so far absent.

The spherical GSLS (Gauss–Seidel Limb Spherical) model of (Loughman
et al., 2004) represents a more accurate and faster model than the GSS model
(Herman et al., 1994, 1995). In the frames of the GSLS model, scattered radiation
intensity in the line of sight is assumed to be equal to scattered radiation intensity
at the point, which is characterized by the same coordinate r, but is located
at the zenith radial direction. For example, the intensity value at the point A
is equated to the intensity value at the point B (see Fig. 8.28). In addition
polarization effects are also taken into account in the frames of GSLS model.

Finally, note that in some special cases the transport equation solution in
1D spherical geometry can be defined as the solution of the same equation in
plane-parallel geometry under special boundary conditions (El-Wakil et al., 2001;
Yildiz, 2002). This enables the use of analytical methods, developed for the
plane-parallel transport problems, to obtain special solution classes for transport
problems with spherical geometry. It can be important when one deals with
inverse transport problems.

The paper by Loughman et al. (2004), is devoted to the investigation and
comparison of six atmospheric models. In two of the models the MC method
was used, whereas four models were based on DOM. These are the CDI, GSLS,
LIMBTRAN and CDIPI models (see above). The detailed numerical analysis of
these models has been carried out, including:

– comparison of results for test problems, obtained via different models;
– comparison of computational speeds;
– estimation of the accuracy of various techniques.

A solution qualified as an exact one if the calculation results obtained via
two different MC codes provided a difference in the results smaller than 1–2%.
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Fig. 8.29. Comparison between the vector RT models (left-hand two lines: GSLS and
MC++ (Postylyakov, 2004)). Calculations were performed for an aerosol-free atmo-
sphere, the underlying surface albedo equal to zero and for the same viewing geometry
as in Figs. 8.21, 8.25. Right-hand vertical line corresponds to the calculations accord-
ing to the scalar RT theory. The figures present percent differences for the exact SS
(single scattering) source function from the case when the polarization is neglected
(after Loughman et al., 2004).

As the comparison shows, the DOM codes mentioned provided low accuracy
in situations where the optical path between calculation and detector points
was great or when the zenith viewing angle changed significantly along the line
of sight. The comparison of calculations according different radiative transfer
models is presented in Fig. 8.29.

8.14.3 DOM in problems with polarization

Light polarization arises mainly owing to single scattering of photons by wa-
ter droplets, aerosol particles, ice crystals or air molecules. Multiple scattering
processes lead to the decrease of the light polarization degree and increase the
entropy of the radiation field (Kokhanovsky, 2003b; Hovenier and Domke, 2005;
Mishchenko et al., 2006).

The retrieval of microscopic and macroscopic properties of clouds is based
often on the measurements of the polarization characteristics of the scattered
light. Hence, in many cases polarization effects should be taken into account in
atmospheric optics problems. In this section we provide a brief description of
some models on polarized radiation transfer that rely on the Vector Radiation
Transport Equation (VRTE).

In these models four unknown functions, forming the so-called Stokes vector
S(I,Q, U, V ), contain full information of light beam intensity, degree of polar-
ization and polarization form.

1. In a paper of Rozanov and Kokhanovsky (2006) the algorithms of the
VRTE solution based on the discrete-ordinates technique (DOT) (Siewert, 2000)
is presented. A new code SCIAPOL 1.0 for the solution of the VRTE for the
Stokes vector in a plane-parallel turbid slab, illuminated by the monodirected
wide beam, is described. The phase matrix is presented in the form of a decom-
position into series on associated Legendre functions.
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The code can be applied to the solving of direct and inverse problem s of
atmospheric optics, including analysis of the applicability of scalar approxima-
tion in complicated light transfer problems in media containing molecular at-
mosphere, aerosols and clouds. Some new approximations for the calculation of
reflection function and light polarization degree under unpolarized light illumi-
nation conditions are proposed. Code capabilities have been demonstrated in a
number of real physical problems. In particular, comparison of scalar and vector
intensity approaches has been carried out.

2. The DOIT (Discrete Ordinate Iterative) algorithm of the polarized radia-
tion field calculation in 1D and 3D spherical geometries is presented in the work
of Emde (2005). It relies on the numerical solution of the transport equation for
Stokes parameters by the characteristics method, the iterative successive-orders-
of-scattering method being applied.

The main equations of the algorithm provide solution values corresponding
to grid meshes so that the solution values can be immediately compared with
satellite measurements in ‘limb’ geometry (zenith angle θ�imb), in geometry ‘down
viewing’ (angle θdown) and in geometry ‘up viewing’ (angle θup) (see Fig. 8.30).
Note, that scattered light intensity is much larger in the ‘limb’ geometry, than
in the geometry ‘down viewing’ due to a larger optical path along the line of
sight. So, the ‘limb’ measurements are more useful from the viewpoint of cloud
optical property reconstruction.

The influence of particle size and orientation on light polarization was stud-
ied in the framework of these models. It was established that for clouds with
horizontally oriented particles the polarization accounting significantly changes
light intensity. Therefore, in many cases polarization effects should be taken into
account, even if it is necessary to calculate only light intensity. The issue of cal-
culation time is of importance, as usual. The time greatly increases as cloud size
increases. For example, calculation of a thin cloud via a 3D model for the four-
component Stokes vector with the help of a 3 Ghz Pentium 4 takes 50 min. The
same calculation of the two-component Stokes vector takes 37 min. Complete
calculation of a similar thick cloud takes 150 min.
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Fig. 8.30. Observation schemes.
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The calculation via a 1D model requires less time. Full calculation of the
thick cloud via a 1D model requires 30 sec. Therefore, 3D models cannot be so
far used in operational or ‘line-by-line’ calculations.

3. The linearized MCC++ spherically symmetric 2D model is presented in
the paper of Postylyakov (2004). It is intended for radiation field calculations
at a large number of wavelengths by the Monte Carlo method. The technique
is based on calculation of radiative functionals for radiation transfer problems
with a single wavelength (that is the linearization point for the transport equa-
tion). These functionals and their derivatives are necessary for the solving of
atmosphere optics inverse problem s. The MCC++ model takes into account
aerosol and molecular scattering, gaseous and aerosol absorption and radiation
reflection by a boundary surface according to the Lambert law.

8.15 Conclusion

Radiation propagation through a horizontally and vertically inhomogeneous at-
mosphere is usually described by the transport equation. To solve this equation
either statistical algorithms (Monte Carlo), or grid methods, in particular the
discrete ordinates methods, are used.

The Monte Carlo methods rely on direct modelling of random photon paths.
They allow us to take into account the arbitrarily complicated structure of a
calculation region. But they require large time expenditure for transport prob-
lems with optically thick media, where great numbers of trajectories should be
calculated to guarantee high accuracy of results.

The chapter is aimed at the description of the discrete ordinates method, in-
tended for multi-dimensional transport equation solving. The representation of
the transport equation coefficients, grid constructions and grid scheme develop-
ments are considered in detail. In addition, long characteristics schemes that are
frequently used for solving of atmospheric optics problems, and the other types
of schemes, that are currently successfully exploited both in model radiation
transfer problems and in applications, are also considered and discussed. Partic-
ular attention is focused on the accuracy of the schemes and their capabilities
in the calculation of smooth solutions in homogeneous media and quickly var-
ied solutions in strongly heterogeneous regions. In the latter case grid solutions
can be distorted by non-physical oscillations of large amplitude, if only special
approaches are not applied to reduce or eliminate the oscillations.

Different iterative algorithms for solving grid equations are considered. The
popular successive-orders-of-scattering method converges fairly slowly (espe-
cially in the case of optically thick and weakly absorbing media). So, the main
types of convergence acceleration method are described.

Methods of grid algorithm parallelizing are presented as well, and the condi-
tions of their effectiveness are considered.

The main characteristics of two codes for solving 3D radiation transport
problems in the atmosphere by the discrete ordinates method are described.
These are SHDOM and RADUGA-5.1(P).
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Simplified models are also presented, which permit the reducing of the scope
of calculations for radiation transport problems that account for the ‘limb’ model
of the atmosphere. The features of the simplified ICA model, which neglects hor-
izontal radiation transfer, are discussed. In particular, the issue of the accuracy
of medium optical characteristics retrieval via using a radiation transport model,
neglecting horizontal radiation transfer, is also discussed.

The described grid methods, which were previously used mainly in different
neutron transport problems, will be also useful in light scattering media op-
tics, especially if the radiation field in turbid media having complex geometrical
shapes is of interest.
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